Cho SA và SB là hai tiếp tuyến cắt nhau của đường tròn (O) (A và B là hai tiếp điểm). Gọi M là một điểm tùy ý trên cung nhỏ AB. Tiếp tuyến của (O) tại M cắt SA tại E và cắt SB tại F.
a) Chứng minh rằng chu vi của tam giác SEF bằng SA + SB.
Quảng cáo
Trả lời:
a)

Hai tiếp tuyến EM và EA cắt nhau tại E nên EM = EA.
Hai tiếp tuyến FM và EB cắt nhau tại F nên FM = FB.
Chu vi tam giác SEF là:
CSEF = SE + SF + EF = SE + SF + EM + MF
= SE + EA + SF + BF = SA + SB.
Vậy chu vi của tam giác SEF bằng SA + SB.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Xét ΔOAM và ΔOBM có:
OM chung
(do OM là tia phân giác của góc )
OA = OB
Do đó ΔOAM = ΔOBM (c.g.c).
Suy ra AM = BM (hai cạnh tương ứng).
Và (hai góc tương ứng) hay OB ⊥ MB.
Do đó OA là tiếp tuyến của đường tròn (M; MA).
Vậy OA và OB là hai tiếp tuyến cắt nhau của (O).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
