Câu hỏi:
13/07/2024 13,344Một máy bay di chuyển ra đến đường băng và bắt đầu chạy đà để cất cánh. Giả sử vận tốc của máy bay khi chạy đà được cho bởi v(t) = 5 + 3t (m/s), với t là thời gian (tính bằng giây) kể từ khi máy bay bắt đầu chạy đà. Sau 30 giây thì máy bay cất cánh rời đường băng. Quãng đường máy bay đã di chuyển kể từ khi bắt đầu chạy đà đến khi rời đường băng là bao nhiêu mét?
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Sau khi học xong bài này, ta giải quyết bài toán này như sau:
Gọi S(t) (0 ≤ t ≤ 30) là quãng đường máy bay di chuyển được sau t giây kể từ lúc bắt đầu chạy đà.
Ta có v(t) = S'(t). Do đó, S(t) là một nguyên hàm của hàm số vận tốc v(t). Sử dụng tính chất của nguyên hàm ta được
\(S\left( t \right) = \int {v(t)dt = \int {\left( {5 + 3t} \right)dt} = 5\int {dt + 3\int {tdt} = 5t + \frac{3}{2}{t^2} + C.} } \)
Theo giả thiết, S(0) = 0 nên C = 0 và ta được\(S\left( t \right) = \frac{3}{2}{t^2} + 5t\;\left( m \right)\)..
Máy bay rời đường băng khi t = 30 giây nên\(S = S\left( {30} \right) = \frac{3}{2}{.30^2} + 5.30 = 1500\;\left( m \right)\)..
Vậy quãng đường máy bay đã di chuyển kể từ khi bắt đầu chạy đà đến khi rời đường băng là 1500 m.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một viên đạn được bắn thẳng đứng lên trên từ mặt đất. Giả sử tại thời điểm t giây (coi t = 0 là thời điểm viên đạn được bắn lên), vận tốc của nó được cho bởi v(t) = 160 – 9,8t (m/s). Tìm độ cao của viên đạn (tính từ mặt đất):
a) Sau t = 5 giây;
b) Khi nó đạt độ cao lớn nhất (làm tròn kết quả đến chữ số thập phân thứ nhất).
Câu 3:
Cho hàm số y = f(x) có đồ thị là (C). Xét điểm M(x; f(x)) thay đổi trên (C). Biết rằng, hệ số góc của tiếp tuyến của đồ thị (C) tại M là kM = (x – 1)2 và điểm M trùng với gốc tọa độ khi nó nằm trên trục tung. Tìm biểu thức f(x).
Câu 4:
Cho hàm số y = f(x) xác định trên khoảng (0; +∞). Biết rằng, với mọi x ∈ (0; +∞) và f(1) = 1. Tính giá trị f(4).
Câu 5:
Tìm nguyên hàm của các hàm số sau:
a) f(x) = 3x2 + 2x – 1; b) f(x) = x3 – x;
Câu 6:
Trong mỗi trường hợp sau, hàm số F(x) có là một nguyên hàm của hàm số f(x) trên khoảng tương ứng không? Vì sao?
a) F(x) = xlnx và f(x) = 1 + lnx trên khoảng (0; +∞);
b) F(x) = esinx và f(x) = ecosx trên ℝ.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận