Câu hỏi:
13/07/2024 1,682Một máy bay di chuyển ra đến đường băng và bắt đầu chạy đà để cất cánh. Giả sử vận tốc của máy bay khi chạy đà được cho bởi v(t) = 5 + 3t (m/s), với t là thời gian (tính bằng giây) kể từ khi máy bay bắt đầu chạy đà. Sau 30 giây thì máy bay cất cánh rời đường băng. Quãng đường máy bay đã di chuyển kể từ khi bắt đầu chạy đà đến khi rời đường băng là bao nhiêu mét?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Sau khi học xong bài này, ta giải quyết bài toán này như sau:
Gọi S(t) (0 ≤ t ≤ 30) là quãng đường máy bay di chuyển được sau t giây kể từ lúc bắt đầu chạy đà.
Ta có v(t) = S'(t). Do đó, S(t) là một nguyên hàm của hàm số vận tốc v(t). Sử dụng tính chất của nguyên hàm ta được
\(S\left( t \right) = \int {v(t)dt = \int {\left( {5 + 3t} \right)dt} = 5\int {dt + 3\int {tdt} = 5t + \frac{3}{2}{t^2} + C.} } \)
Theo giả thiết, S(0) = 0 nên C = 0 và ta được\(S\left( t \right) = \frac{3}{2}{t^2} + 5t\;\left( m \right)\)..
Máy bay rời đường băng khi t = 30 giây nên\(S = S\left( {30} \right) = \frac{3}{2}{.30^2} + 5.30 = 1500\;\left( m \right)\)..
Vậy quãng đường máy bay đã di chuyển kể từ khi bắt đầu chạy đà đến khi rời đường băng là 1500 m.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một viên đạn được bắn thẳng đứng lên trên từ mặt đất. Giả sử tại thời điểm t giây (coi t = 0 là thời điểm viên đạn được bắn lên), vận tốc của nó được cho bởi v(t) = 160 – 9,8t (m/s). Tìm độ cao của viên đạn (tính từ mặt đất):
a) Sau t = 5 giây;
b) Khi nó đạt độ cao lớn nhất (làm tròn kết quả đến chữ số thập phân thứ nhất).
Câu 3:
Cho hàm số y = f(x) có đồ thị là (C). Xét điểm M(x; f(x)) thay đổi trên (C). Biết rằng, hệ số góc của tiếp tuyến của đồ thị (C) tại M là kM = (x – 1)2 và điểm M trùng với gốc tọa độ khi nó nằm trên trục tung. Tìm biểu thức f(x).
Câu 4:
Trong mỗi trường hợp sau, hàm số F(x) có là một nguyên hàm của hàm số f(x) trên khoảng tương ứng không? Vì sao?
a) F(x) = xlnx và f(x) = 1 + lnx trên khoảng (0; +∞);
b) F(x) = esinx và f(x) = ecosx trên ℝ.
Câu 5:
Cho hàm số y = f(x) xác định trên khoảng (0; +∞). Biết rằng, với mọi x ∈ (0; +∞) và f(1) = 1. Tính giá trị f(4).
Câu 6:
Doanh thu bán hàng của một công ty khi bán một loại sản phẩn là số tiền R(x) (triệu đồng) thu được khi x đơn vị sản phẩm được bán ra. Tốc độ biến động (thay đổi) của doanh thu khi x đơn vị sản phẩm đã được bán là hàm số MR(x) = R'(x). Một công ty công nghệ cho biết, tốc độ biến đổi của doanh thu khi bán một loại con chíp của hãng được cho bởi MR(x) = 300 – 0,1x, ở đó x là số lượng chíp đã bán. Tìm doanh thu của công ty khi đã bán 1000 con chíp.
Câu 7:
Tìm nguyên hàm của các hàm số sau:
a) f(x) = 3x2 + 2x – 1; b) f(x) = x3 – x;
về câu hỏi!