Câu hỏi trong đề: Giải SGK Toán 12 KNTT Bài 11. Nguyên hàm có đáp án !!
Quảng cáo
Trả lời:

c) \(\int {{{\left( {\sin \frac{x}{2} - \cos \frac{x}{2}} \right)}^2}dx} \)\( = \int {\left( {1 - 2\sin \frac{x}{2}\cos \frac{x}{2}} \right)dx} \)\( = \int {dx} - \int {\sin xd} x\)\( = x + \cos x + C\).
d) \(\int {\left( {x + {{\tan }^2}x} \right)} dx\)\( = \int {xdx + \int {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx} } \)\( = \int {xdx + \int {\frac{1}{{{{\cos }^2}x}}dx - \int {dx} } } \)
\( = \frac{{{x^2}}}{2} + \tan x - x + C\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi S(t) là độ cao của viên đạn bắn lên từ mặt đất sau t giây kể từ thời điểm đạn được bắn lên.
Khi đó \(S\left( t \right) = \int {v\left( t \right)dt = \int {\left( {160 - 9,8t} \right)dt = 160t - 4,9{t^2}} + C} \).
Vì S(0) = 0 nên 160.0 – 4,9.0 + C = 0 Þ C = 0.
Do đó S(t) = −4,9t2 + 160 t.
a) Sau 5 giây độ cao của viên đạn là: S(5) = −4,9.52 + 160.5 = 677,5 (m).
b) Có S(t) = −4,9t2 + 160 t
= \( - \frac{1}{{10}}\left( {49{t^2} - 2.7t.\frac{{800}}{7} + \frac{{640000}}{{49}}} \right) + \frac{{64000}}{{49}}\)
\( - \frac{1}{{10}}{\left( {7t - \frac{{800}}{7}} \right)^2} + \frac{{64000}}{{49}} \le \frac{{64000}}{{49}}\).
Viên đạn đạt độ cao lớn nhất là \(\frac{{64000}}{{49}} \approx 1306,1\) m khi \(t = \frac{{800}}{{49}}\) giây.
Lời giải
Sau khi học xong bài này, ta giải quyết bài toán này như sau:
Gọi S(t) (0 ≤ t ≤ 30) là quãng đường máy bay di chuyển được sau t giây kể từ lúc bắt đầu chạy đà.
Ta có v(t) = S'(t). Do đó, S(t) là một nguyên hàm của hàm số vận tốc v(t). Sử dụng tính chất của nguyên hàm ta được
\(S\left( t \right) = \int {v(t)dt = \int {\left( {5 + 3t} \right)dt} = 5\int {dt + 3\int {tdt} = 5t + \frac{3}{2}{t^2} + C.} } \)
Theo giả thiết, S(0) = 0 nên C = 0 và ta được\(S\left( t \right) = \frac{3}{2}{t^2} + 5t\;\left( m \right)\)..
Máy bay rời đường băng khi t = 30 giây nên\(S = S\left( {30} \right) = \frac{3}{2}{.30^2} + 5.30 = 1500\;\left( m \right)\)..
Vậy quãng đường máy bay đã di chuyển kể từ khi bắt đầu chạy đà đến khi rời đường băng là 1500 m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.