Câu hỏi:
13/07/2024 11,765
Doanh thu bán hàng của một công ty khi bán một loại sản phẩn là số tiền R(x) (triệu đồng) thu được khi x đơn vị sản phẩm được bán ra. Tốc độ biến động (thay đổi) của doanh thu khi x đơn vị sản phẩm đã được bán là hàm số MR(x) = R'(x). Một công ty công nghệ cho biết, tốc độ biến đổi của doanh thu khi bán một loại con chíp của hãng được cho bởi MR(x) = 300 – 0,1x, ở đó x là số lượng chíp đã bán. Tìm doanh thu của công ty khi đã bán 1000 con chíp.
Doanh thu bán hàng của một công ty khi bán một loại sản phẩn là số tiền R(x) (triệu đồng) thu được khi x đơn vị sản phẩm được bán ra. Tốc độ biến động (thay đổi) của doanh thu khi x đơn vị sản phẩm đã được bán là hàm số MR(x) = R'(x). Một công ty công nghệ cho biết, tốc độ biến đổi của doanh thu khi bán một loại con chíp của hãng được cho bởi MR(x) = 300 – 0,1x, ở đó x là số lượng chíp đã bán. Tìm doanh thu của công ty khi đã bán 1000 con chíp.
Câu hỏi trong đề: Giải SGK Toán 12 KNTT Bài 11. Nguyên hàm có đáp án !!
Quảng cáo
Trả lời:
Doanh thu của công ty là \(R\left( x \right) = \int {\left( {300 - 0,1x} \right)dx = 300x - \frac{1}{{20}}{x^2} + C} \).
Vì R(0) = 0 nên C = 0.
Do đó \[R\left( x \right) = 300x - \frac{1}{{20}}{x^2}\].
Doanh thu của công ty khi đã bán 1000 con chíp là:
\[R\left( {1000} \right) = 300.1000 - \frac{1}{{20}}{.1000^2} = 250000\] triệu đồng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi S(t) là độ cao của viên đạn bắn lên từ mặt đất sau t giây kể từ thời điểm đạn được bắn lên.
Khi đó \(S\left( t \right) = \int {v\left( t \right)dt = \int {\left( {160 - 9,8t} \right)dt = 160t - 4,9{t^2}} + C} \).
Vì S(0) = 0 nên 160.0 – 4,9.0 + C = 0 Þ C = 0.
Do đó S(t) = −4,9t2 + 160 t.
a) Sau 5 giây độ cao của viên đạn là: S(5) = −4,9.52 + 160.5 = 677,5 (m).
b) Có S(t) = −4,9t2 + 160 t
= \( - \frac{1}{{10}}\left( {49{t^2} - 2.7t.\frac{{800}}{7} + \frac{{640000}}{{49}}} \right) + \frac{{64000}}{{49}}\)
\( - \frac{1}{{10}}{\left( {7t - \frac{{800}}{7}} \right)^2} + \frac{{64000}}{{49}} \le \frac{{64000}}{{49}}\).
Viên đạn đạt độ cao lớn nhất là \(\frac{{64000}}{{49}} \approx 1306,1\) m khi \(t = \frac{{800}}{{49}}\) giây.
Lời giải
c) \(\int {{{\left( {\sin \frac{x}{2} - \cos \frac{x}{2}} \right)}^2}dx} \)\( = \int {\left( {1 - 2\sin \frac{x}{2}\cos \frac{x}{2}} \right)dx} \)\( = \int {dx} - \int {\sin xd} x\)\( = x + \cos x + C\).
d) \(\int {\left( {x + {{\tan }^2}x} \right)} dx\)\( = \int {xdx + \int {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx} } \)\( = \int {xdx + \int {\frac{1}{{{{\cos }^2}x}}dx - \int {dx} } } \)
\( = \frac{{{x^2}}}{2} + \tan x - x + C\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.