Một vật thể chuyển động trong không gian Oxyz. Tại mỗi thời điểm t, vật thể ở vị trí M(cost – sint; cost + sint; cost). Hỏi vật thể có chuyển động trong một mặt phẳng cố định hay không?
Một vật thể chuyển động trong không gian Oxyz. Tại mỗi thời điểm t, vật thể ở vị trí M(cost – sint; cost + sint; cost). Hỏi vật thể có chuyển động trong một mặt phẳng cố định hay không?
Quảng cáo
Trả lời:
Sau khi học xong bài này, ta giải quyết bài toán này như sau:
Thời điểm t = 0, vật ở vị trí M1(1; 1; 1).
Thời điểm \(t = \frac{\pi }{2}\), vật ở vị trí M2(−1; 1; 0).
Thời điểm t = π, vật ở vị trí M3(−1; −1; −1).
Có \(\overrightarrow {{M_1}{M_2}} = \left( { - 2;0; - 1} \right)\) và \(\overrightarrow {{M_1}{M_3}} = \left( { - 2; - 2; - 2} \right)\) không cùng phương nên ba điểm M1, M2, M3 không thẳng hàng.
Mặt phẳng (M1M2M3) có \(\overrightarrow {{M_1}{M_2}} = \left( { - 2;0; - 1} \right)\) và \(\overrightarrow {{M_1}{M_3}} = \left( { - 2; - 2; - 2} \right)\) là cặp vectơ chỉ phương nên có vectơ pháp tuyến
\(\overrightarrow n = \left[ {\overrightarrow {{M_1}{M_2}} ,\overrightarrow {{M_1}{M_3}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&{ - 1}\\{ - 2}&{ - 2}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&{ - 2}\\{ - 2}&{ - 2}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&0\\{ - 2}&{ - 2}\end{array}} \right|} \right) = \left( { - 2; - 2;4} \right)\).
Mặt phẳng (M1M2M3) đi qua M1(1; 1; 1) và có vectơ pháp tuyến \(\overrightarrow n = \left( { - 2; - 2;4} \right)\) có phương trình là: −2(x – 1) – 2(y – 1) + 4(z – 1) = 0 hay 2x + 2y – 4z = 0.
Ta có 2(cost – sint) + 2(cost + sint) – 4 cost = 0 nên vị trí M(cost – sint; cost + sint; cost) luôn thuộc mặt phẳng (M1M2M3).
Do đó vị trí M(cost – sint; cost + sint; cost) luôn thuộc mặt phẳng 2x + 2y – 4z = 0.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi mặt phẳng cần tìm là mặt phẳng (P).
Ta có \(\overrightarrow i = \left( {1;0;0} \right)\) và \(\overrightarrow {{n_Q}} = \left( {1;2; - 3} \right)\).
Vì (P) // Ox và (P) ^ (Q) nên \(\overrightarrow {{n_P}} = \left[ {\overrightarrow i ,\overrightarrow {{n_Q}} } \right] = \left( {0;3;2} \right)\).
Mặt phẳng đi qua M(2; 3; −1) và nhận \(\overrightarrow {{n_P}} = \left( {0;3;2} \right)\) làm một vectơ pháp tuyến có phương trình là: 3(y – 3) + 2(z + 1) = 0 Û 3y + 2z – 7 = 0.
Lời giải

Chọn các điểm như hình vẽ.
Gọi A là hình chiếu của C trên mặt phẳng (P).
Vì CBD là tam giác cân nên CA là đường cao, phân giác, trung tuyến của BD.
Ta có \(CA = d\left( {C,\left( P \right)} \right) = \frac{{\left| {1 + 2.2 + 2.4 + 3} \right|}}{{\sqrt {1 + {2^2} + {2^2}} }} = \frac{{16}}{3}\).
Vì tam giác CAB vuông tại A, có \(\widehat {ACB} = \frac{{115^\circ }}{2} = 57,5^\circ \).
Suy ra R = AB = CA.tan57,5° ≈ 8,4.
Vậy vùng quan sát được trên mặt phẳng (P) của camera là hình tròn có bán kính bằng 8,4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.