Câu hỏi:

12/07/2024 621

Trong không gian Oxyz, cho hai vectơ u=a;b;c v=a';b';c'.

a) Vectơ n=bc'b'c;ca'c'a;ab'a'b có vuông góc với cả hai vectơ u v hay không?

b) n=0 khi và chỉ khi u v có mối quan hệ gì?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có \(\overrightarrow n .\overrightarrow u = \left( {bc' - b'c} \right).a + \left( {ca' - c'a} \right).b + \left( {ab' - a'b} \right).c\)

= bc'a – b'ca + ca'b – c'ab + ab'c – a'bc

= (bc'a – c'ab) + (ab'c – b'ca) + (ca'b – a'bc)

= 0.

Do đó vectơ \(\overrightarrow n \) vuông góc với vectơ \(\overrightarrow u \).

Ta có \(\overrightarrow n .\overrightarrow v = \left( {bc' - b'c} \right).a' + \left( {ca' - c'a} \right).b' + \left( {ab' - a'b} \right).c'\)

= bc'a' – b'ca' + ca'b' – c'ab' + ab'c' – a'bc'

= (bc'a' – c'a'b) + (ab'c' – b'c'a) + (ca'b' – a'b'c)

= 0.

Do đó vectơ \(\overrightarrow n \) vuông góc với vectơ \(\overrightarrow v \).

Suy ra vectơ \(\overrightarrow n \) vuông góc với cả 2 vectơ \(\overrightarrow u \)\(\overrightarrow v \).

b) Nếu \(\overrightarrow n = \overrightarrow 0 \) thì \(\left\{ \begin{array}{l}bc' - b'c = 0\\ca' - c'a = 0\\ab' - a'b = 0\end{array} \right.\) (I).

+) Nếu a = b = c = 0 thì (I) luôn đúng khi đó \(\overrightarrow u \)\(\overrightarrow v \) cùng phương với nhau.

+) Nếu a ≠ 0; b ≠ 0; c ≠ 0 thì (I) ta suy ra \(\left\{ \begin{array}{l}\frac{{b'}}{b} = \frac{{c'}}{c}\\\frac{{a'}}{a} = \frac{{c'}}{c}\\\frac{{a'}}{a} = \frac{{b'}}{b}\end{array} \right.\).

Do đó, a' = ka; b' = kb, c' = kc (k ℝ).

Suy ra \(\overrightarrow v = k\overrightarrow u \). Do đó \(\overrightarrow u \)\(\overrightarrow v \) cùng phương với nhau.

Vậy \(\overrightarrow n = \overrightarrow 0 \) khi và chỉ khi \(\overrightarrow u \)\(\overrightarrow v \) cùng phương.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi mặt phẳng cần tìm là mặt phẳng (P).

Ta có \(\overrightarrow i = \left( {1;0;0} \right)\)\(\overrightarrow {{n_Q}} = \left( {1;2; - 3} \right)\).

Vì (P) // Ox và (P) ^ (Q) nên \(\overrightarrow {{n_P}}  = \left[ {\overrightarrow i ,\overrightarrow {{n_Q}} } \right] = \left( {0;3;2} \right)\).

Mặt phẳng đi qua M(2; 3; −1) và nhận \(\overrightarrow {{n_P}} = \left( {0;3;2} \right)\) làm một vectơ pháp tuyến có phương trình là: 3(y – 3) + 2(z + 1) = 0 Û 3y + 2z – 7 = 0.

Lời giải

(H.5.14) Góc quan sát ngang của một camera là 115°. Trong không gian Oxyz, camera được đặt tại điểm C(1; 2; 4) và chiếu thẳng về phía mặt phẳng (P): x + 2y + 2z + 3 = 0. Hỏi vùng quan sát được trên mặt phẳng (ảnh 2)

Chọn các điểm như hình vẽ.

Gọi A là hình chiếu của C trên mặt phẳng (P).

Vì CBD là tam giác cân nên CA là đường cao, phân giác, trung tuyến của BD.

Ta có \(CA = d\left( {C,\left( P \right)} \right) = \frac{{\left| {1 + 2.2 + 2.4 + 3} \right|}}{{\sqrt {1 + {2^2} + {2^2}} }} = \frac{{16}}{3}\).

Vì tam giác CAB vuông tại A, có \(\widehat {ACB} = \frac{{115^\circ }}{2} = 57,5^\circ \).

Suy ra R = AB = CA.tan57,5° ≈ 8,4.

Vậy vùng quan sát được trên mặt phẳng (P) của camera là hình tròn có bán kính bằng 8,4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay