Câu hỏi:

12/07/2024 6,078

Trong không gian Oxyz, sàn của một căn phòng có dạng hình tứ giác với bốn đỉnh O(0; 0; 0), A(2; 0; 0), B(2; 3; 0), \(C\left( {0;2\sqrt 2 ;0} \right)\). Bốn bức tường của căn phòng đều vuông góc với sàn.

a) Viết phương trình bốn mặt phẳng tương ứng chứa bốn bức tường đó.

b) Trong bốn mặt phẳng tương ứng chứa bốn bức tường đó, hãy chỉ ra những cặp mặt phẳng vuông góc với nhau.

Trong không gian Oxyz, sàn của một căn phòng có dạng hình tứ giác với bốn đỉnh O(0; 0; 0), A(2; 0; 0), B(2; 3; 0),  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có \(\overrightarrow {AB} = \left( {0;3;0} \right),\overrightarrow {BC} = \left( { - 2;2\sqrt 2 - 3;0} \right)\)

Sàn nhà nằm trong mặt phẳng Oxy có một vectơ pháp tuyến là \(\overrightarrow k = \left( {0;0;1} \right)\).

Suy ra mặt phẳng Oxy: z = 0.

Mặt phẳng bức tường (P) chứa 2 điểm O, A chính là mặt phẳng Oxz: y = 0.

Mặt phẳng bức tường (Q) chứa 2 điểm O, C chính là mặt phẳng Oyz: x = 0.

Mặt phẳng bức tường (α) chứa 2 điểm A, B có vectơ pháp tuyến là \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow k } \right] = \left( {3;0;0} \right)\) có phương trình là: 3(x – 2) = 0 hay x – 2 = 0.

Mặt phẳng bức tường (β) chứa 2 điểm B, C có vectơ pháp tuyến

 \(\overrightarrow {n'} = \left[ {\overrightarrow {BC} ,\overrightarrow k } \right] = \left( {\left| {\begin{array}{*{20}{c}}{2\sqrt 2 - 3}&0\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{ - 2}\\1&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&{2\sqrt 2 }\\0&0\end{array}} \right|} \right) = \left( {2\sqrt 2 - 3;2;0} \right)\) có phương trình là:

\(\left( {2\sqrt 2 - 3} \right)x + 2\left( {y - 2\sqrt 2 } \right) = 0\) hay \(\left( {2\sqrt 2 - 3} \right)x + 2y - 4\sqrt 2 = 0\).

b) Có bức tường (P) vuông góc với bức tường (Q).

Bức tường (P) vuông góc với bức tường (α).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi mặt phẳng cần tìm là mặt phẳng (P).

Ta có \(\overrightarrow i = \left( {1;0;0} \right)\)\(\overrightarrow {{n_Q}} = \left( {1;2; - 3} \right)\).

Vì (P) // Ox và (P) ^ (Q) nên \(\overrightarrow {{n_P}}  = \left[ {\overrightarrow i ,\overrightarrow {{n_Q}} } \right] = \left( {0;3;2} \right)\).

Mặt phẳng đi qua M(2; 3; −1) và nhận \(\overrightarrow {{n_P}} = \left( {0;3;2} \right)\) làm một vectơ pháp tuyến có phương trình là: 3(y – 3) + 2(z + 1) = 0 Û 3y + 2z – 7 = 0.

Lời giải

(H.5.14) Góc quan sát ngang của một camera là 115°. Trong không gian Oxyz, camera được đặt tại điểm C(1; 2; 4) và chiếu thẳng về phía mặt phẳng (P): x + 2y + 2z + 3 = 0. Hỏi vùng quan sát được trên mặt phẳng (ảnh 2)

Chọn các điểm như hình vẽ.

Gọi A là hình chiếu của C trên mặt phẳng (P).

Vì CBD là tam giác cân nên CA là đường cao, phân giác, trung tuyến của BD.

Ta có \(CA = d\left( {C,\left( P \right)} \right) = \frac{{\left| {1 + 2.2 + 2.4 + 3} \right|}}{{\sqrt {1 + {2^2} + {2^2}} }} = \frac{{16}}{3}\).

Vì tam giác CAB vuông tại A, có \(\widehat {ACB} = \frac{{115^\circ }}{2} = 57,5^\circ \).

Suy ra R = AB = CA.tan57,5° ≈ 8,4.

Vậy vùng quan sát được trên mặt phẳng (P) của camera là hình tròn có bán kính bằng 8,4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP