Trong một kì thi tuyển sinh có ba môn thi Toán, Văn, Tiếng Anh. Trong không gian Oxyz, người ta biểu diễn kết quả thi của mỗi thí sinh bởi điểm có hoành độ, tung độ, cao độ tương ứng là điểm Toán, Văn, Tiếng Anh của thí sinh đó.
a) Chứng minh rằng các điểm biểu diễn tương ứng với các thí sinh có tổng số điểm ba môn thi bằng 27 (nếu có) cùng thuộc mặt phẳng có phương trình x + y + z – 27 = 0.
b) Chứng minh rằng tồn tại một số mặt phẳng đôi một song song với nhau sao cho hai điểm biểu diễn ứng với thí sinh có tổng số điểm thi bằng nhau thì cùng thuộc một mặt phẳng trong số các mặt phẳng đó.
Trong một kì thi tuyển sinh có ba môn thi Toán, Văn, Tiếng Anh. Trong không gian Oxyz, người ta biểu diễn kết quả thi của mỗi thí sinh bởi điểm có hoành độ, tung độ, cao độ tương ứng là điểm Toán, Văn, Tiếng Anh của thí sinh đó.
a) Chứng minh rằng các điểm biểu diễn tương ứng với các thí sinh có tổng số điểm ba môn thi bằng 27 (nếu có) cùng thuộc mặt phẳng có phương trình x + y + z – 27 = 0.
b) Chứng minh rằng tồn tại một số mặt phẳng đôi một song song với nhau sao cho hai điểm biểu diễn ứng với thí sinh có tổng số điểm thi bằng nhau thì cùng thuộc một mặt phẳng trong số các mặt phẳng đó.

Quảng cáo
Trả lời:

a) Giả sử một thí sinh có số điểm Toán, Văn, Tiếng Anh lần lượt là x; y; z.
Tổng điểm của thí sinh này là: x + y + z = 27.
Điều này có nghĩa là điểm (x; y; z) thỏa mãn phương trình:
x + y + z = 27 hay x + y + z – 27 = 0.
Do đó tất cả các điểm (x; y; z) biểu diễn tương ứng với các thí sinh có tổng số điểm ba môn thi bằng 27 (nếu có) cùng thuộc mặt phẳng có phương trình x + y + z – 27 = 0.
b) Giả sử S là tổng điểm thi của một thí sinh. Khi đó phương trình biểu diễn các điểm có tổng số điểm thi bằng S là: x + y + z = S hay x + y + z – S = 0.
Các mặt phẳng có phương trình dạng: x + y + z – S = 0 với S là tổng số điểm thi của các thí sinh là các mặt phẳng song song với nhau vì chúng có cùng vectơ pháp tuyến là (1; 1; 1).
Do đó, tất cả các điểm (x; y; z) biểu diễn kết quả của các thí sinh có tổng số điểm thi bằng nhau cùng thuộc một mặt phẳng trong số các mặt phẳng song song này.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi mặt phẳng cần tìm là mặt phẳng (P).
Ta có \(\overrightarrow i = \left( {1;0;0} \right)\) và \(\overrightarrow {{n_Q}} = \left( {1;2; - 3} \right)\).
Vì (P) // Ox và (P) ^ (Q) nên \(\overrightarrow {{n_P}} = \left[ {\overrightarrow i ,\overrightarrow {{n_Q}} } \right] = \left( {0;3;2} \right)\).
Mặt phẳng đi qua M(2; 3; −1) và nhận \(\overrightarrow {{n_P}} = \left( {0;3;2} \right)\) làm một vectơ pháp tuyến có phương trình là: 3(y – 3) + 2(z + 1) = 0 Û 3y + 2z – 7 = 0.
Lời giải

Chọn các điểm như hình vẽ.
Gọi A là hình chiếu của C trên mặt phẳng (P).
Vì CBD là tam giác cân nên CA là đường cao, phân giác, trung tuyến của BD.
Ta có \(CA = d\left( {C,\left( P \right)} \right) = \frac{{\left| {1 + 2.2 + 2.4 + 3} \right|}}{{\sqrt {1 + {2^2} + {2^2}} }} = \frac{{16}}{3}\).
Vì tam giác CAB vuông tại A, có \(\widehat {ACB} = \frac{{115^\circ }}{2} = 57,5^\circ \).
Suy ra R = AB = CA.tan57,5° ≈ 8,4.
Vậy vùng quan sát được trên mặt phẳng (P) của camera là hình tròn có bán kính bằng 8,4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.