Câu hỏi:
12/07/2024 200Trong không gian Oxyz, cho điểm M(x0; y0; z0) và mặt phẳng (P): Ax + By + Cz + D = 0 có vectơ pháp tuyến \(\overrightarrow n = \left( {A;B;C} \right)\). Gọi N là hình chiếu vuông góc của M trên (P) (H.5.13).
a) Giải thích vì sao tồn tại số k để \(\overrightarrow {MN} = k\overrightarrow n \). Tính tọa độ của N theo k, tọa độ của M và các hệ số A, B, C, D.
b) Thay tọa độ của N vào phương trình mặt phẳng (P) để từ đó tính k theo tọa độ của M và các hệ số A, B, C, D.
c) Từ \(\left| {\overrightarrow {MN} } \right| = \left| k \right|\left| {\overrightarrow n } \right|\), hãy tính độ dài của đoạn thẳng MN theo tọa độ của M và các hệ số A, B, C, D. Từ đó suy ra công thức tính khoảng cách từ điểm M đến mặt phẳng (P).
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác
Quảng cáo
Trả lời:
a) Vì N là hình chiếu vuông góc của M trên (P) nên \(MN \bot (P)\).
Do đó \(\overrightarrow {MN} \) sẽ cùng phương với vectơ pháp tuyến \(\overrightarrow n \).
Vậy tồn tại một số k sao cho \(\overrightarrow {MN} = k\overrightarrow n \).
Giả sử N(x1; y1; z1). Suy ra \(\overrightarrow {MN} = \left( {{x_1} - {x_0};{y_1} - {y_0};{z_1} - {z_0}} \right)\).
Vì \(\overrightarrow {MN} = k\overrightarrow n \) nên \(\left\{ \begin{array}{l}{x_1} - {x_0} = kA\\{y_1} - {y_0} = kB\\{z_1} - {z_0} = kC\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_0} + kA\\{y_1} = {y_0} + kB\\{z_1} = {z_0} + kC\end{array} \right.\).
b) Thay tọa độ điểm N vào (P), ta được
A(x0 + kA) + B(y0 + kB) + C(z0 + kC) + D = 0
Û k(A2 + B2 + C2) + Ax0 + By0 + Cz0 + D = 0
\( \Leftrightarrow k = \frac{{ - A{x_0} - B{y_0} - C{z_0} - D}}{{{A^2} + {B^2} + {C^2}}}\).
c) Ta có \(\left| {\overrightarrow {MN} } \right| = \left| k \right|\left| {\overrightarrow n } \right|\) \( \Leftrightarrow \left| {\overrightarrow {MN} } \right| = \left| k \right|\sqrt {{A^2} + {B^2} + {C^2}} \)
Mà \(k = \frac{{ - A{x_0} - B{y_0} - C{z_0} - D}}{{{A^2} + {B^2} + {C^2}}}\) nên \(MN = \left| {\frac{{ - A{x_0} - B{y_0} - C{z_0} - D}}{{{A^2} + {B^2} + {C^2}}}} \right|\sqrt {{A^2} + {B^2} + {C^2}} \)
\( \Leftrightarrow MN = \frac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).
Do đó khoảng cách từ điểm M đến mặt phẳng (P) là \(d = \frac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian Oxyz, cho hình hộp ABCD.A'B'C'D', với A(1; −1; 3), B(0; 2; 4), D(2; −1; 1), A'(0; 1; 2).
a) Tìm tọa độ các điểm C, B', D'.
b) Viết phương trình mặt phẳng (CB'D').
Câu 2:
Trong không gian Oxyz, viết phương trình mặt phẳng đi qua điểm M(1; 2; −1) và vuông góc với trục Ox.
Câu 3:
Trong không gian Oxyz, viết phương trình mặt phẳng đi qua M(2; 3; −1), song song với trục Ox và vuông góc với mặt phẳng (Q): x + 2y – 3z + 1 = 0.
Câu 4:
(H.5.14) Góc quan sát ngang của một camera là 115°. Trong không gian Oxyz, camera được đặt tại điểm C(1; 2; 4) và chiếu thẳng về phía mặt phẳng (P): x + 2y + 2z + 3 = 0. Hỏi vùng quan sát được trên mặt phẳng (P) của camera là hình tròn có bán kính bằng bao nhiêu? (Làm tròn kết quả đến chữ số thập phân thứ nhất)
Câu 5:
Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M(1; −1; 5) và vuông góc với hai mặt phẳng (Q): 3x + 2y – z = 0, (R): x + y – z = 0.
Câu 6:
Trong không gian Oxyz, một ngôi nhà có sàn nhà thuộc mặt phẳng Oxy, trần nhà tầng 1 thuộc mặt phẳng z – 1 = 0, mái nhà tầng 2 thuộc mặt phẳng x + y + 50z – 100 = 0. Hỏi trong ba mặt phẳng tương ứng chứa sàn nhà, trần tầng 1, mái tầng 2, hai mặt phẳng nào song song với nhau.
Câu 7:
Bác An dự định làm bốn mái của ngôi nhà sao cho chúng là bốn mặt bên của một hình chóp đều và các mái nhà kề nhau thì vuông góc với nhau. Hỏi ý tưởng trên có thực hiện được không?
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
về câu hỏi!