Trong không gian Oxyz, cho hai mặt phẳng (P): x + 3y – z = 0, (Q): x – y – 2z + 1 = 0.
a) Chứng minh rằng hai mặt phẳng (P) và (Q) vuông góc với nhau.
b) Tìm điểm M thuộc trục Ox và cách đều hai mặt phẳng (P) và (Q).
Trong không gian Oxyz, cho hai mặt phẳng (P): x + 3y – z = 0, (Q): x – y – 2z + 1 = 0.
a) Chứng minh rằng hai mặt phẳng (P) và (Q) vuông góc với nhau.
b) Tìm điểm M thuộc trục Ox và cách đều hai mặt phẳng (P) và (Q).
Quảng cáo
Trả lời:
a) Ta có \(\overrightarrow {{n_P}} = \left( {1;3; - 1} \right),\overrightarrow {{n_Q}} = \left( {1; - 1; - 2} \right)\).
Vì \(\overrightarrow {{n_P}} .\overrightarrow {{n_Q}} = 1.1 + 3.\left( { - 1} \right) + \left( { - 1} \right).\left( { - 2} \right) = 0\).
Do đó hai mặt phẳng (P) và (Q) vuông góc với nhau.
b) Vì M Î Ox nên M(a; 0; 0).
Vì d(M, (P)) = d(M, (Q)) nên \(\frac{{\left| a \right|}}{{\sqrt {1 + 9 + 1} }} = \frac{{\left| {a + 1} \right|}}{{\sqrt {1 + 1 + 4} }}\)\( \Leftrightarrow \sqrt 6 \left| a \right| = \sqrt {11} \left| {a + 1} \right|\)
\( \Leftrightarrow 6{a^2} = 11{a^2} + 22a + 11\)\( \Leftrightarrow 5{a^2} + 22a + 11 = 0\)\( \Leftrightarrow a = \frac{{ - 11 - \sqrt {66} }}{5}\) hoặc \(a = \frac{{ - 11 + \sqrt {66} }}{5}\).
Vậy có hai điểm M thỏa mãn yêu cầu là:
\({M_1}\left( {\frac{{ - 11 - \sqrt {66} }}{5};0;0} \right),{M_2}\left( {\frac{{ - 11 + \sqrt {66} }}{5};0;0} \right)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi mặt phẳng cần tìm là mặt phẳng (P).
Ta có \(\overrightarrow i = \left( {1;0;0} \right)\) và \(\overrightarrow {{n_Q}} = \left( {1;2; - 3} \right)\).
Vì (P) // Ox và (P) ^ (Q) nên \(\overrightarrow {{n_P}} = \left[ {\overrightarrow i ,\overrightarrow {{n_Q}} } \right] = \left( {0;3;2} \right)\).
Mặt phẳng đi qua M(2; 3; −1) và nhận \(\overrightarrow {{n_P}} = \left( {0;3;2} \right)\) làm một vectơ pháp tuyến có phương trình là: 3(y – 3) + 2(z + 1) = 0 Û 3y + 2z – 7 = 0.
Lời giải

Chọn các điểm như hình vẽ.
Gọi A là hình chiếu của C trên mặt phẳng (P).
Vì CBD là tam giác cân nên CA là đường cao, phân giác, trung tuyến của BD.
Ta có \(CA = d\left( {C,\left( P \right)} \right) = \frac{{\left| {1 + 2.2 + 2.4 + 3} \right|}}{{\sqrt {1 + {2^2} + {2^2}} }} = \frac{{16}}{3}\).
Vì tam giác CAB vuông tại A, có \(\widehat {ACB} = \frac{{115^\circ }}{2} = 57,5^\circ \).
Suy ra R = AB = CA.tan57,5° ≈ 8,4.
Vậy vùng quan sát được trên mặt phẳng (P) của camera là hình tròn có bán kính bằng 8,4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.