Câu hỏi:
24/06/2024 950Từ mặt nước trong một bể nước, tại ba vị trí đôi một cách nhau 2 m, người ta lần lượt thả dây dọi để quả dọi chạm đáy bể. Phần dây dọi (thẳng) nằm trong nước tại ba vị trí đó lần lượt có độ dài 4 m; 4,4 m; 4,8 m. Biết đáy bể là phẳng. Hỏi đáy bể nghiêng so với mặt phẳng nằm ngang một góc bao nhiêu độ?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi 3 điểm ở trên mặt nước lần lượt là A, B, C và ba điểm tương ứng ở đáy bể là A', B', C' sao cho AA' = 4 m, BB' = 4,4 m, CC' = 4,8 m.
Chọn hệ trục tọa độ như hình vẽ, O là trung điểm của AC.
Ta có A(0; 1; 0), \(B\left( {\sqrt 3 ;0;0} \right)\), C(0; −1; 0), \(A'(0;1;4)\), \(B'\left( {\sqrt 3 ;0;4,4} \right)\), C'(0; −1; 4,8).
Ta có \(\overrightarrow {A'B'} = \left( {\sqrt 3 ; - 1;0,4} \right)\), \(\overrightarrow {A'C'} = \left( {0; - 2;0,8} \right)\).
Có \(\left[ {\overrightarrow {A'B'} ,\overrightarrow {A'C'} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&{0,4}\\{ - 2}&{0,8}\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{0,4}&{\sqrt 3 }\\{0,8}&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{\sqrt 3 }&{ - 1}\\0&{ - 2}\end{array}} \right|} \right)\) \( = \left( {0; - 0,8\sqrt 3 ; - 2\sqrt 3 } \right)\).
Mặt phẳng đáy bể là mặt phẳng (A'B'C') có một vectơ pháp tuyến là \(\overrightarrow n = \left( {0; - 0,8\sqrt 3 ; - 2\sqrt 3 } \right)\).
Mặt phẳng nằm ngang (mặt nước) chính là mặt phẳng Oxy: z = 0 có một vectơ pháp tuyến là \(\overrightarrow k = \left( {0;0;1} \right)\).
Do đó \(\cos \left( {\left( {A'B'C'} \right),\left( {Oxy} \right)} \right) = \frac{{\left| {0.0 - 0,8\sqrt 3 .0 - 2\sqrt 3 .1} \right|}}{{\sqrt {{0^2} + {{\left( { - 0,8\sqrt 3 } \right)}^2} + {{\left( { - 2\sqrt 3 } \right)}^2}} .\sqrt 1 }} = \frac{{2\sqrt 3 }}{{\frac{{2\sqrt {87} }}{5}}} = \frac{{5\sqrt {29} }}{{29}}\).
Suy ra ((A'B'C'), (Oxy)) ≈ 21,8°.
Vậy đáy bể nghiêng so với mặt phẳng nằm ngang một góc khoảng 21,8°.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian Oxyz, cho mặt phẳng (P): x – 2y – 2z – 3 = 0 và đường thẳng d: . Viết phương trình mặt phẳng (Q) chứa d và vuông góc với mặt phẳng (P).
Câu 2:
Bản vẽ thiết kế của một công trình được vẽ trong một hệ trục tọa độ Oxyz. Sàn nhà của công trình thuộc mặt phẳng Oxy, đường ống thoát nước thẳng và đi qua hai điểm A(1; 2; −1) và B(5; 6; −2). Tính góc tạo bởi đường ống thoát nước và mặt sàn.
Câu 3:
Trong không gian Oxyz, cho hai đường thẳng d: và d': . Viết phương trình mặt phẳng (P) chứa đường thẳng d và song song với đường thẳng d'.
Câu 4:
Trong không gian Oxyz, cho ba điểm A(1; 0; −1), B(0; 1; 2), C(−1; −2; 3).
a) Viết phương trình mặt phẳng (ABC).
b) Viết phương trình đường thẳng AC.
c) Viết phương trình mặt cầu đường kính AC.
Câu 5:
Trong không gian Oxyz, cho mặt cầu (S): x2 + y2 + z2 – 2x + 4y + 2z – 3 = 0. Tọa độ tâm I và bán kính R của mặt cầu (S) lần lượt là
A. I(1; −2; −1), R = 3.
B. I(1; 2; 1), R = 9.
C. I(1; 2; 1), R = 3.
D. I(1; −2; −1), R = 9.
Câu 6:
Trong không gian Oxyz, cho mặt phẳng (P): x – 2y + 2z – 1 = 0 và hai điểm A(1; −1; 2), B(−1; 1; 0).
a) Tính khoảng cách từ A đến mặt phẳng (P).
b) Viết phương trình mặt phẳng (Q) đi qua A và song song với mặt phẳng (P).
c) Viết phương trình mặt phẳng (R) chứa A, B và vuông góc với mặt phẳng (P).
về câu hỏi!