Bản vẽ thiết kế của một công trình được vẽ trong một hệ trục tọa độ Oxyz. Sàn nhà của công trình thuộc mặt phẳng Oxy, đường ống thoát nước thẳng và đi qua hai điểm A(1; 2; −1) và B(5; 6; −2). Tính góc tạo bởi đường ống thoát nước và mặt sàn.
Bản vẽ thiết kế của một công trình được vẽ trong một hệ trục tọa độ Oxyz. Sàn nhà của công trình thuộc mặt phẳng Oxy, đường ống thoát nước thẳng và đi qua hai điểm A(1; 2; −1) và B(5; 6; −2). Tính góc tạo bởi đường ống thoát nước và mặt sàn.
Câu hỏi trong đề: Giải SGK Toán 12 KNTT Bài tập cuối chương 5 có đáp án !!
Quảng cáo
Trả lời:
Mặt phẳng Oxy: z = 0 có một vectơ pháp tuyến là \(\overrightarrow k = \left( {0;0;1} \right)\).
Đường thẳng AB có một vectơ chỉ phương là \(\overrightarrow {AB} = \left( {4;4; - 1} \right)\).
Ta có \(\sin \left( {AB,\left( {Oxy} \right)} \right) = \frac{{\left| { - 1} \right|}}{{\sqrt {{4^2} + {4^2} + {{\left( { - 1} \right)}^2}} .\sqrt 1 }} = \frac{1}{{\sqrt {33} }}\).
Suy ra (AB, (Oxy)) ≈ 10°.
Vậy góc tạo bởi đường ống thoát nước và mặt sàn khoảng 10°.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi 3 điểm ở trên mặt nước lần lượt là A, B, C và ba điểm tương ứng ở đáy bể là A', B', C' sao cho AA' = 4 m, BB' = 4,4 m, CC' = 4,8 m.
Chọn hệ trục tọa độ như hình vẽ, O là trung điểm của AC.
Ta có A(0; 1; 0), \(B\left( {\sqrt 3 ;0;0} \right)\), C(0; −1; 0), \(A'(0;1;4)\), \(B'\left( {\sqrt 3 ;0;4,4} \right)\), C'(0; −1; 4,8).
Ta có \(\overrightarrow {A'B'} = \left( {\sqrt 3 ; - 1;0,4} \right)\), \(\overrightarrow {A'C'} = \left( {0; - 2;0,8} \right)\).
Có \(\left[ {\overrightarrow {A'B'} ,\overrightarrow {A'C'} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&{0,4}\\{ - 2}&{0,8}\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{0,4}&{\sqrt 3 }\\{0,8}&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{\sqrt 3 }&{ - 1}\\0&{ - 2}\end{array}} \right|} \right)\) \( = \left( {0; - 0,8\sqrt 3 ; - 2\sqrt 3 } \right)\).
Mặt phẳng đáy bể là mặt phẳng (A'B'C') có một vectơ pháp tuyến là \(\overrightarrow n = \left( {0; - 0,8\sqrt 3 ; - 2\sqrt 3 } \right)\).
Mặt phẳng nằm ngang (mặt nước) chính là mặt phẳng Oxy: z = 0 có một vectơ pháp tuyến là \(\overrightarrow k = \left( {0;0;1} \right)\).
Do đó \(\cos \left( {\left( {A'B'C'} \right),\left( {Oxy} \right)} \right) = \frac{{\left| {0.0 - 0,8\sqrt 3 .0 - 2\sqrt 3 .1} \right|}}{{\sqrt {{0^2} + {{\left( { - 0,8\sqrt 3 } \right)}^2} + {{\left( { - 2\sqrt 3 } \right)}^2}} .\sqrt 1 }} = \frac{{2\sqrt 3 }}{{\frac{{2\sqrt {87} }}{5}}} = \frac{{5\sqrt {29} }}{{29}}\).
Suy ra ((A'B'C'), (Oxy)) ≈ 21,8°.
Vậy đáy bể nghiêng so với mặt phẳng nằm ngang một góc khoảng 21,8°.
Lời giải
Ta có \[\overrightarrow {AB} = \left( { - 1;1;3} \right),\overrightarrow {AC} = \left( { - 2; - 2;4} \right)\], \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {10; - 2;4} \right)\)
a) Mặt phẳng (ABC) nhận \(\overrightarrow n = \frac{1}{2}\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {5; - 1;2} \right)\) làm một vectơ pháp tuyến và đi qua điểm A(1; 0; −1) có phương trình là:
5(x – 1) – y + 2(z + 1) = 0 hay 5x – y + 2z – 3 = 0.
b) Đường thẳng AC đi qua điểm A(1; 0; −1) và nhận \[\overrightarrow u = - \frac{1}{2}\overrightarrow {AC} = \left( {1;1; - 2} \right)\] làm một vectơ chỉ phương có phương trình là: \(x = \left\{ \begin{array}{l}x = 1 + t\\y = t\\z = - 1 - 2t\end{array} \right.\).
c) Gọi I là trung điểm của AC. Khi đó I(0; −1; 1).
Bán kính mặt cầu \(R = \frac{{AC}}{2} = \frac{{\sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2} + {4^2}} }}{2} = \sqrt 6 \).
Phương trình mặt cầu đường kính AC là: x2 + (y + 1)2 + (z – 1)2 = 6.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
