Bản vẽ thiết kế của một công trình được vẽ trong một hệ trục tọa độ Oxyz. Sàn nhà của công trình thuộc mặt phẳng Oxy, đường ống thoát nước thẳng và đi qua hai điểm A(1; 2; −1) và B(5; 6; −2). Tính góc tạo bởi đường ống thoát nước và mặt sàn.
Bản vẽ thiết kế của một công trình được vẽ trong một hệ trục tọa độ Oxyz. Sàn nhà của công trình thuộc mặt phẳng Oxy, đường ống thoát nước thẳng và đi qua hai điểm A(1; 2; −1) và B(5; 6; −2). Tính góc tạo bởi đường ống thoát nước và mặt sàn.
Quảng cáo
Trả lời:
Mặt phẳng Oxy: z = 0 có một vectơ pháp tuyến là \(\overrightarrow k = \left( {0;0;1} \right)\).
Đường thẳng AB có một vectơ chỉ phương là \(\overrightarrow {AB} = \left( {4;4; - 1} \right)\).
Ta có \(\sin \left( {AB,\left( {Oxy} \right)} \right) = \frac{{\left| { - 1} \right|}}{{\sqrt {{4^2} + {4^2} + {{\left( { - 1} \right)}^2}} .\sqrt 1 }} = \frac{1}{{\sqrt {33} }}\).
Suy ra (AB, (Oxy)) ≈ 10°.
Vậy góc tạo bởi đường ống thoát nước và mặt sàn khoảng 10°.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi 3 điểm ở trên mặt nước lần lượt là A, B, C và ba điểm tương ứng ở đáy bể là A', B', C' sao cho AA' = 4 m, BB' = 4,4 m, CC' = 4,8 m.
Chọn hệ trục tọa độ như hình vẽ, O là trung điểm của AC.
Ta có A(0; 1; 0), \(B\left( {\sqrt 3 ;0;0} \right)\), C(0; −1; 0), \(A'(0;1;4)\), \(B'\left( {\sqrt 3 ;0;4,4} \right)\), C'(0; −1; 4,8).
Ta có \(\overrightarrow {A'B'} = \left( {\sqrt 3 ; - 1;0,4} \right)\), \(\overrightarrow {A'C'} = \left( {0; - 2;0,8} \right)\).
Có \(\left[ {\overrightarrow {A'B'} ,\overrightarrow {A'C'} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&{0,4}\\{ - 2}&{0,8}\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{0,4}&{\sqrt 3 }\\{0,8}&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{\sqrt 3 }&{ - 1}\\0&{ - 2}\end{array}} \right|} \right)\) \( = \left( {0; - 0,8\sqrt 3 ; - 2\sqrt 3 } \right)\).
Mặt phẳng đáy bể là mặt phẳng (A'B'C') có một vectơ pháp tuyến là \(\overrightarrow n = \left( {0; - 0,8\sqrt 3 ; - 2\sqrt 3 } \right)\).
Mặt phẳng nằm ngang (mặt nước) chính là mặt phẳng Oxy: z = 0 có một vectơ pháp tuyến là \(\overrightarrow k = \left( {0;0;1} \right)\).
Do đó \(\cos \left( {\left( {A'B'C'} \right),\left( {Oxy} \right)} \right) = \frac{{\left| {0.0 - 0,8\sqrt 3 .0 - 2\sqrt 3 .1} \right|}}{{\sqrt {{0^2} + {{\left( { - 0,8\sqrt 3 } \right)}^2} + {{\left( { - 2\sqrt 3 } \right)}^2}} .\sqrt 1 }} = \frac{{2\sqrt 3 }}{{\frac{{2\sqrt {87} }}{5}}} = \frac{{5\sqrt {29} }}{{29}}\).
Suy ra ((A'B'C'), (Oxy)) ≈ 21,8°.
Vậy đáy bể nghiêng so với mặt phẳng nằm ngang một góc khoảng 21,8°.
Lời giải
Đường thẳng d đi qua A(−1; 1; 0) và có một vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( {1;2; - 1} \right)\).
Đường thẳng d' có một vectơ chỉ phương là \(\overrightarrow {{u_2}} = \left( {1;1;2} \right)\).
Có \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {5; - 3; - 1} \right)\).
Mặt phẳng (P) đi qua A(−1; 1; 0) và nhận \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {5; - 3; - 1} \right)\) làm một vectơ pháp tuyến có phương trình là: 5(x + 1) – 3(y – 1) – z = 0 hay 5x – 3y – z + 8 = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
