Câu hỏi:

11/07/2024 9,736

Nếu đứng trước biển và nhìn ra xa, người ta sẽ thấy một đường giao giữa mặt biển và bầu trời, đó là đường chân trời đối với người quan sát (H.5.45a). Về mặt Vật lí, đường chân trời là đường giới hạn phần Trái Đất mà người quan sát có thể nhìn thấy được (phần còn lại bị chính Trái Đất che khuất). Ta có thể hình dung rằng, nếu người quan sát ở tại đỉnh của một chiếc nón và Trái Đất được “thả” vào trong một chiếc nón đó, thì đường chân trời trong trường hợp này là đường chạm giữa Trái Đất và chiếc nón (H.5.45b). Trong mô hình toán học, đường chân trời đối với người quan sát tại ví trí B là tập hợp những điểm A nằm trên bề mặt Trái Đất sao cho BAO^=90°, với O là tâm Trái Đất (H.5.45c). Trong không gian Oxyz, giả sử bề mặt Trái Đất (S) có phương trình x2 + y2 + z2 = 1 và người quan sát ở vị trí B(1; 1; 1).

Gọi A là một vị trí bất kì trên đường chân trời đối với người quan sát ở vị trí B. Tính khoảng cách AB.

Nếu đứng trước biển và nhìn ra xa, người ta sẽ thấy một đường giao giữa mặt biển và bầu trời, (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Mặt cầu (S) có tâm O(0; 0; 0) và R = 1.

Ta có A Î (S) nên OA = 1.

\(OB = \sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} = \sqrt 3 \).

Xét tam giác BOA vuông tại O có: \(AB = \sqrt {O{B^2} - O{A^2}} = \sqrt {3 - 1} = \sqrt 2 \).

Vậy khoảng cách AB là \(\sqrt 2 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ mặt nước trong một bể nước, tại ba vị trí đôi một cách nhau 2 m, người ta lần lượt thả dây dọi để quả dọi chạm đáy bể. Phần dây  (ảnh 1)

Gọi 3 điểm ở trên mặt nước lần lượt là A, B, C và ba điểm tương ứng ở đáy bể là A', B', C' sao cho AA' = 4 m, BB' = 4,4 m, CC' = 4,8 m.

Chọn hệ trục tọa độ như hình vẽ, O là trung điểm của AC.

Ta có A(0; 1; 0), \(B\left( {\sqrt 3 ;0;0} \right)\), C(0; 1; 0), \(A'(0;1;4)\), \(B'\left( {\sqrt 3 ;0;4,4} \right)\), C'(0; 1; 4,8).

Ta có \(\overrightarrow {A'B'} = \left( {\sqrt 3 ; - 1;0,4} \right)\), \(\overrightarrow {A'C'} = \left( {0; - 2;0,8} \right)\).

\(\left[ {\overrightarrow {A'B'} ,\overrightarrow {A'C'} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&{0,4}\\{ - 2}&{0,8}\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{0,4}&{\sqrt 3 }\\{0,8}&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{\sqrt 3 }&{ - 1}\\0&{ - 2}\end{array}} \right|} \right)\) \( = \left( {0; - 0,8\sqrt 3 ; - 2\sqrt 3 } \right)\).

Mặt phẳng đáy bể là mặt phẳng (A'B'C') có một vectơ pháp tuyến là \(\overrightarrow n = \left( {0; - 0,8\sqrt 3 ; - 2\sqrt 3 } \right)\).

Mặt phẳng nằm ngang (mặt nước) chính là mặt phẳng Oxy: z = 0 có một vectơ pháp tuyến là \(\overrightarrow k = \left( {0;0;1} \right)\).

Do đó \(\cos \left( {\left( {A'B'C'} \right),\left( {Oxy} \right)} \right) = \frac{{\left| {0.0 - 0,8\sqrt 3 .0 - 2\sqrt 3 .1} \right|}}{{\sqrt {{0^2} + {{\left( { - 0,8\sqrt 3 } \right)}^2} + {{\left( { - 2\sqrt 3 } \right)}^2}} .\sqrt 1 }} = \frac{{2\sqrt 3 }}{{\frac{{2\sqrt {87} }}{5}}} = \frac{{5\sqrt {29} }}{{29}}\).

Suy ra ((A'B'C'), (Oxy)) 21,8°.

Vậy đáy bể nghiêng so với mặt phẳng nằm ngang một góc khoảng 21,8°.

Lời giải

Đường thẳng d đi qua A(1; 1; 0) và có một vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( {1;2; - 1} \right)\).

Đường thẳng d' có một vectơ chỉ phương là \(\overrightarrow {{u_2}} = \left( {1;1;2} \right)\).

\(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {5; - 3; - 1} \right)\).

Mặt phẳng (P) đi qua A(1; 1; 0) và nhận \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {5; - 3; - 1} \right)\) làm một vectơ pháp tuyến có phương trình là: 5(x + 1) – 3(y – 1) – z = 0 hay 5x – 3y – z + 8 = 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP