Câu hỏi:
11/07/2024 9,736
Nếu đứng trước biển và nhìn ra xa, người ta sẽ thấy một đường giao giữa mặt biển và bầu trời, đó là đường chân trời đối với người quan sát (H.5.45a). Về mặt Vật lí, đường chân trời là đường giới hạn phần Trái Đất mà người quan sát có thể nhìn thấy được (phần còn lại bị chính Trái Đất che khuất). Ta có thể hình dung rằng, nếu người quan sát ở tại đỉnh của một chiếc nón và Trái Đất được “thả” vào trong một chiếc nón đó, thì đường chân trời trong trường hợp này là đường chạm giữa Trái Đất và chiếc nón (H.5.45b). Trong mô hình toán học, đường chân trời đối với người quan sát tại ví trí B là tập hợp những điểm A nằm trên bề mặt Trái Đất sao cho , với O là tâm Trái Đất (H.5.45c). Trong không gian Oxyz, giả sử bề mặt Trái Đất (S) có phương trình x2 + y2 + z2 = 1 và người quan sát ở vị trí B(1; 1; −1).
Gọi A là một vị trí bất kì trên đường chân trời đối với người quan sát ở vị trí B. Tính khoảng cách AB.
Nếu đứng trước biển và nhìn ra xa, người ta sẽ thấy một đường giao giữa mặt biển và bầu trời, đó là đường chân trời đối với người quan sát (H.5.45a). Về mặt Vật lí, đường chân trời là đường giới hạn phần Trái Đất mà người quan sát có thể nhìn thấy được (phần còn lại bị chính Trái Đất che khuất). Ta có thể hình dung rằng, nếu người quan sát ở tại đỉnh của một chiếc nón và Trái Đất được “thả” vào trong một chiếc nón đó, thì đường chân trời trong trường hợp này là đường chạm giữa Trái Đất và chiếc nón (H.5.45b). Trong mô hình toán học, đường chân trời đối với người quan sát tại ví trí B là tập hợp những điểm A nằm trên bề mặt Trái Đất sao cho , với O là tâm Trái Đất (H.5.45c). Trong không gian Oxyz, giả sử bề mặt Trái Đất (S) có phương trình x2 + y2 + z2 = 1 và người quan sát ở vị trí B(1; 1; −1).
Gọi A là một vị trí bất kì trên đường chân trời đối với người quan sát ở vị trí B. Tính khoảng cách AB.

Câu hỏi trong đề: Giải SGK Toán 12 KNTT Bài tập cuối chương 5 có đáp án !!
Quảng cáo
Trả lời:
Mặt cầu (S) có tâm O(0; 0; 0) và R = 1.
Ta có A Î (S) nên OA = 1.
Có \(OB = \sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} = \sqrt 3 \).
Xét tam giác BOA vuông tại O có: \(AB = \sqrt {O{B^2} - O{A^2}} = \sqrt {3 - 1} = \sqrt 2 \).
Vậy khoảng cách AB là \(\sqrt 2 \).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi 3 điểm ở trên mặt nước lần lượt là A, B, C và ba điểm tương ứng ở đáy bể là A', B', C' sao cho AA' = 4 m, BB' = 4,4 m, CC' = 4,8 m.
Chọn hệ trục tọa độ như hình vẽ, O là trung điểm của AC.
Ta có A(0; 1; 0), \(B\left( {\sqrt 3 ;0;0} \right)\), C(0; −1; 0), \(A'(0;1;4)\), \(B'\left( {\sqrt 3 ;0;4,4} \right)\), C'(0; −1; 4,8).
Ta có \(\overrightarrow {A'B'} = \left( {\sqrt 3 ; - 1;0,4} \right)\), \(\overrightarrow {A'C'} = \left( {0; - 2;0,8} \right)\).
Có \(\left[ {\overrightarrow {A'B'} ,\overrightarrow {A'C'} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&{0,4}\\{ - 2}&{0,8}\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{0,4}&{\sqrt 3 }\\{0,8}&0\end{array}} \right|,\left| {\begin{array}{*{20}{c}}{\sqrt 3 }&{ - 1}\\0&{ - 2}\end{array}} \right|} \right)\) \( = \left( {0; - 0,8\sqrt 3 ; - 2\sqrt 3 } \right)\).
Mặt phẳng đáy bể là mặt phẳng (A'B'C') có một vectơ pháp tuyến là \(\overrightarrow n = \left( {0; - 0,8\sqrt 3 ; - 2\sqrt 3 } \right)\).
Mặt phẳng nằm ngang (mặt nước) chính là mặt phẳng Oxy: z = 0 có một vectơ pháp tuyến là \(\overrightarrow k = \left( {0;0;1} \right)\).
Do đó \(\cos \left( {\left( {A'B'C'} \right),\left( {Oxy} \right)} \right) = \frac{{\left| {0.0 - 0,8\sqrt 3 .0 - 2\sqrt 3 .1} \right|}}{{\sqrt {{0^2} + {{\left( { - 0,8\sqrt 3 } \right)}^2} + {{\left( { - 2\sqrt 3 } \right)}^2}} .\sqrt 1 }} = \frac{{2\sqrt 3 }}{{\frac{{2\sqrt {87} }}{5}}} = \frac{{5\sqrt {29} }}{{29}}\).
Suy ra ((A'B'C'), (Oxy)) ≈ 21,8°.
Vậy đáy bể nghiêng so với mặt phẳng nằm ngang một góc khoảng 21,8°.
Lời giải
Đường thẳng d đi qua A(−1; 1; 0) và có một vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( {1;2; - 1} \right)\).
Đường thẳng d' có một vectơ chỉ phương là \(\overrightarrow {{u_2}} = \left( {1;1;2} \right)\).
Có \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {5; - 3; - 1} \right)\).
Mặt phẳng (P) đi qua A(−1; 1; 0) và nhận \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {5; - 3; - 1} \right)\) làm một vectơ pháp tuyến có phương trình là: 5(x + 1) – 3(y – 1) – z = 0 hay 5x – 3y – z + 8 = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.