Câu hỏi:

13/07/2024 216

Cầu Trường Tiền (hay cầu Tràng Tiền) ở thành phố Huế được khởi công vào tháng 5/1899 và khánh thành vào ngày 18/12/1900. Cầu được thiết kế theo kiến trúc Gothic, bắc qua sông Hương. Từ Festival Huế năm 2002, cầu Trường Tiền được lắp đặt một hệ thống chiếu sáng đổi màu hiện đại. Cầu dài 402,60 m, gồm 6 nhịp dầm thép.

(Nguồn: https://vi.wikipedia.org)

Giả sử một nhịp dầm thép có dạng parabol y = ax2 trong hệ trục toạ độ Oxy, ở đó Ox song song với mặt cầu. Biết rằng, hai chân nhịp dầm thép trên mặt cầu cách nhau 66,66 m, khoảng cách từ đỉnh cao nhất của nhịp dầm thép đến mặt cầu là 5,45 m (Hình 11).

Tìm a (làm tròn kết quả đến hàng phần nghìn).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì đồ thị hàm số y = ax2 đi qua điểm B(33,33; –5,45) nên thay x = 33,33 và y = –5,45 vào hàm số y = ax2, ta được:

–5,45 = a.33,332, suy ra  (thỏa mãn).

Vậy a ≈ –0,005.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giá của chiếc áo sau lần giảm giá thứ nhất là:

120 000 – 120 000 . x% = 120 000 – 1 200x (đồng).

Giá của chiếc áo sau hai lần giảm giá là:

120 000 – 1 200x – (120 000 – 1 200x).x%

= 120 000 – 1 200x – 1 200x + 12x2

= 12x2 – 2 400x + 120 000 (đồng).

Theo bài, sau hai đợt giảm giá, giá của chiếc áo còn 76 800 đồng nên ta có phương trình:

12x2 – 2 400x + 120 000 = 76 800

12x2 – 2 400x + 43 200 = 0

x2 – 200x + 3 600 = 0.

Phương trình trên có các hệ số a = 1, b = –200, c = 3 600.

Do b = –200 nên b’ = –100.

Ta có: ∆’ = (–100)2 – 1 . 3 600 = 6 400 > 0.

Do ∆’ > 0 nên phương trình trên có hai nghiệm phân biệt là:

 

Ta thấy chỉ có giá trị x2 = 20 thỏa mãn điều kiện vì x% < 100%.

Vậy x = 20 là giá trị cần tìm.

Lời giải

Điểm thuộc đồ thị  có tung độ bằng 4 nên thay y = 4 vào hàm số ta được: suy ra nên hoặc  

Vậy các điểm cần tìm là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay