Câu hỏi:

13/07/2024 34,381

Cho hàm số y = f(x). Đồ thị của đạo hàm y = f'(x) là đường cong trong Hình 2. Biết rằng diện tích của các phần hình phẳng A và B lần lượt là SA = 2 và SB = 3. Nếu f(0) = 4 thì f(5) bằng

A. 3.

B. 5.

C. 9.

D. −1.

Cho hàm số y = f(x). Đồ thị của đạo hàm y = f'(x) là đường cong trong Hình 2. Biết rằng diện tích của các phần hình phẳng A và B lần lượt là SA = 2 và SB = 3. Nếu f(0) = 4 thì f(5) bằng A. 3. B. 5. C. 9. D. −1. (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

\[{S_A} = \int\limits_0^2 {f'\left( x \right)dx = \left. {f\left( x \right)} \right|} _0^2 = f\left( 2 \right) - f\left( 0 \right) = 2 \Rightarrow f\left( 2 \right) = 2 + f\left( 0 \right) = 6\].

\({S_B} = \int\limits_2^5 {\left| {f'\left( x \right)} \right|dx} = - \int\limits_2^5 {f'\left( x \right)dx} = - \left[ {f\left( 5 \right) - f\left( 2 \right)} \right] = 3\)Þ f(5) = f(2) – 3 = 6 – 3 = 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích của mặt cắt là: \(S\left( x \right) = \pi {\left( {10 + \sqrt x } \right)^2}\).

Dung tích của chậu là:

\(V = \int\limits_0^{16} {S\left( x \right)dx} = \pi \int\limits_0^{16} {{{\left( {10 + \sqrt x } \right)}^2}dx} \) \( = \pi \int\limits_0^{16} {\left( {100 + 20\sqrt x + x} \right)dx} \)

\( = \pi \left. {\left( {100x + \frac{{40}}{3}{x^{\frac{3}{2}}} + \frac{{{x^2}}}{2}} \right)} \right|_0^{16}\)\( = \frac{{7744}}{3}\pi \).

Lời giải

Diện tích mặt cắt là: \(S\left( x \right) = \left( {9 - {x^2}} \right)\) (m2).

Thể tích của lều là: \(V = \int\limits_0^3 {\left( {9 - {x^2}} \right)dx} \)\( = \left. {\left( {9x - \frac{{{x^3}}}{3}} \right)} \right|_0^3\)= 18.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP