Câu hỏi:

07/07/2024 5,861

Trên một phần mềm đã thiết kế sân khấu 3D trong không gian Oxyz. Tính góc giữa hai tia sáng có phương trình lần lượt là: \(d:\frac{x}{2} = \frac{y}{1} = \frac{z}{{ - 1}}\)\[d':\frac{{x - 1}}{3} = \frac{{y - 1}}{3} = \frac{{z - 1}}{9}\].

Trên một phần mềm đã thiết kế sân khấu 3D trong không gian Oxyz. Tính góc giữa hai tia sáng có phương trình lần lượt  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đường thẳng d và d' có vectơ chỉ phương lần lượt là \(\overrightarrow a = \left( {2;1; - 1} \right),\overrightarrow {a'} = \left( {3;3;9} \right)\).

Ta có \(\cos \left( {d,d'} \right) = \frac{{\left| {2.3 + 1.3 + \left( { - 1} \right).9} \right|}}{{\sqrt {{2^2} + {1^2} + {1^2}} .\sqrt {{3^2} + {3^2} + {9^2}} }} = \frac{0}{{3\sqrt {66} }} = 0\).

Suy ra (d, d') = 90°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đường thẳng d và d' lần lượt có vectơ chỉ phương là \(\overrightarrow a = \left( {1;0;0} \right),\overrightarrow {a'} = \left( {0;0;3} \right)\).

Ta có \(\overrightarrow a .\overrightarrow {a'} \) = 1.0 + 0.0 + 0.3 = 0.

Do đó d và d' vuông góc với nhau.

Lời giải

a) Đường thẳng a đi qua M(1; 2; 0) và có vectơ chỉ phương là \(\overrightarrow a = \left( {0;0;3} \right)\).

Đường thẳng b đi qua N(1; 2; 6) và có vectơ chỉ phương \(\overrightarrow {a'} = \left( {4;2;0} \right)\).

\(\overrightarrow a .\overrightarrow {a'} = 0.4 + 0.2 + 3.0 = 0\). Suy ra a ^ b.

Ta xét hệ \(\left\{ \begin{array}{l}1 = 1 + 4t'\\2 = 2 + 2t'\\3t = 6\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t' = 0\\t' = 0\\t = 2\end{array} \right.\) . Suy ra hệ có nghiệm duy nhất.

Do đó a và b cắt nhau.

b) Thay t = 2 vào phương trình đường thẳng a ta được \(\left\{ \begin{array}{l}x = 1\\y = 2\\z = 6\end{array} \right.\).

Vậy tọa độ giao điểm của hai đường thẳng này là (1; 2; 6).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP