Câu hỏi:
11/07/2024 6,631
Trong không gian Oxyz, cho hình lăng trụ đứng OBC.O'B'C' có đáy là tam giác OBC vuông tại O. Cho biết B(3; 0; 0), C(0; 1; 0), O'(0; 0; 2). Tính góc giữa:
a) hai đường thẳng BO' và B'C;
b) hai mặt phẳng (O'BC) và (OBC);
c) đường thẳng B'C và mặt phẳng (O'BC)
Trong không gian Oxyz, cho hình lăng trụ đứng OBC.O'B'C' có đáy là tam giác OBC vuông tại O. Cho biết B(3; 0; 0), C(0; 1; 0), O'(0; 0; 2). Tính góc giữa:
a) hai đường thẳng BO' và B'C;
b) hai mặt phẳng (O'BC) và (OBC);
c) đường thẳng B'C và mặt phẳng (O'BC)
Quảng cáo
Trả lời:

Chọn hệ trục như hình vẽ
O(0; 0; 0), B(3; 0; 0), C(0; 1; 0), O'(0; 0; 2), B'(3; 0; 2), C'(0; 1; 2).
a) Đường thẳng BO' nhận \(\overrightarrow {BO'} = \left( { - 3;0;2} \right)\) làm vectơ chỉ phương.
Đường thẳng B'C nhận \(\overrightarrow {B'C} = \left( { - 3;1; - 2} \right)\) làm vectơ chỉ phương.
\(\cos \left( {BO',B'C} \right) = \frac{{\left| {\left( { - 3} \right).\left( { - 3} \right) + 0.1 + 2.\left( { - 2} \right)} \right|}}{{\sqrt {{{\left( { - 3} \right)}^2} + {2^2}} .\sqrt {{{\left( { - 3} \right)}^2} + {1^2} + {{\left( { - 2} \right)}^2}} }} = \frac{5}{{\sqrt {182} }}\).
Suy ra (BO', B'C) ≈ 68,25°.
b) Mặt phẳng (OBC) Ì (Oxy) nên nhận \(\overrightarrow k = \left( {0;0;1} \right)\) làm vectơ pháp tuyến.
Mặt phẳng (O'BC) có phương trình đoạn chắn là: \(\frac{x}{3} + \frac{y}{1} + \frac{z}{2} = 1\) Û 2x + 6y + 3z = 6 có vectơ pháp tuyến \(\overrightarrow n = \left( {2;6;3} \right)\).
\(\cos \left( {\left( {O'BC} \right),\left( {OBC} \right)} \right) = \frac{{\left| 3 \right|}}{{\sqrt 1 .\sqrt {{2^2} + {6^2} + {3^2}} }} = \frac{3}{7}\).
Suy ra ((O'BC), (OBC)) ≈ 64,62°.
c) Đường thẳng B'C nhận \(\overrightarrow {B'C} = \left( { - 3;1; - 2} \right)\) làm vectơ chỉ phương.
Mặt phẳng (O'BC) có vectơ pháp tuyến \(\overrightarrow n = \left( {2;6;3} \right)\).
\(\sin \left( {B'C,\left( {O'BC} \right)} \right) = \frac{{\left| {\left( { - 3} \right).2 + 1.6 + \left( { - 2} \right).3} \right|}}{{\sqrt {{{\left( { - 3} \right)}^2} + {1^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{2^2} + {6^2} + {3^2}} }} = \frac{6}{{7\sqrt {14} }}\).
Suy ra (B'C, (O'BC)) ≈ 13,24°.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đường thẳng d và d' lần lượt có vectơ chỉ phương là \(\overrightarrow a = \left( {1;0;0} \right),\overrightarrow {a'} = \left( {0;0;3} \right)\).
Ta có \(\overrightarrow a .\overrightarrow {a'} \) = 1.0 + 0.0 + 0.3 = 0.
Do đó d và d' vuông góc với nhau.
Lời giải
a) Đường thẳng a đi qua M(1; 2; 0) và có vectơ chỉ phương là \(\overrightarrow a = \left( {0;0;3} \right)\).
Đường thẳng b đi qua N(1; 2; 6) và có vectơ chỉ phương \(\overrightarrow {a'} = \left( {4;2;0} \right)\).
Có \(\overrightarrow a .\overrightarrow {a'} = 0.4 + 0.2 + 3.0 = 0\). Suy ra a ^ b.
Ta xét hệ \(\left\{ \begin{array}{l}1 = 1 + 4t'\\2 = 2 + 2t'\\3t = 6\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t' = 0\\t' = 0\\t = 2\end{array} \right.\) . Suy ra hệ có nghiệm duy nhất.
Do đó a và b cắt nhau.
b) Thay t = 2 vào phương trình đường thẳng a ta được \(\left\{ \begin{array}{l}x = 1\\y = 2\\z = 6\end{array} \right.\).
Vậy tọa độ giao điểm của hai đường thẳng này là (1; 2; 6).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.