Câu hỏi:
11/07/2024 392Trên một cánh đồng điện mặt trời, người ta đã thiết lập sẵn một hệ tọa độ Oxyz. Hai tấm pin năng lượng lần lượt nằm trong hai mặt phẳng (P): 2x + 2z + 1 = 0 và (P'): x + z + 7 = 0.
a) Tính góc giữa (P) và (P').
b) Tính góc hợp bởi (P) và (P') với mặt đất (Q) có phương trình z = 0.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Mặt phẳng (P) có vectơ pháp tuyến là \(\overrightarrow n = \left( {2;0;2} \right)\).
Mặt phẳng (P') có vectơ pháp tuyến là \(\overrightarrow {n'} = \left( {1;0;1} \right)\).
\(\cos \left( {\left( P \right),\left( {P'} \right)} \right) = \frac{{\left| {2.1 + 0.0 + 2.1} \right|}}{{\sqrt {{2^2} + {2^2}} .\sqrt {{1^2} + {1^2}} }} = \frac{4}{4} = 1\).
Suy ra ((P), (P')) = 0°.
b) Mặt phẳng (Q) có vectơ pháp tuyến là \(\overrightarrow {{n_Q}} = \left( {0;0;1} \right)\).
\(\cos \left( {\left( P \right),\left( Q \right)} \right) = \frac{{\left| {2.0 + 0.0 + 2.1} \right|}}{{\sqrt {{2^2} + {2^2}} .\sqrt {{1^2}} }} = \frac{2}{{2\sqrt 2 }} = \frac{1}{{\sqrt 2 }}\).
Suy ra ((P), (Q)) = 45°.
\(\cos \left( {\left( {P'} \right),\left( Q \right)} \right) = \frac{{\left| {1.0 + 0.0 + 1.1} \right|}}{{\sqrt {{1^2} + {1^2}} .\sqrt 1 }} = \frac{1}{{\sqrt 2 }}\).
Suy ra ((P'), (Q)) = 45°.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian Oxyz, cho hình lăng trụ tam giác ABC.A'B'C' với A(1; 2; 1), B(7; 5; 3), C(4; 2; 0), A'(4; 9; 9). Tìm tọa độ một vectơ chỉ phương của mỗi đường thẳng AB, A'C' và BB'.
Câu 2:
Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.A'B'C'D'. Cho biết A(0; 0; 0), B(1; 0; 0), D(0; 5; 0), A'(0; 0; 3). Tính góc giữa:
a) hai đường thẳng AC và BA';
b) hai mặt phẳng (BB'D'D) và (AA'C'C);
c) đường thẳng AC' và mặt phẳng (A'BD).
Câu 3:
Trong trò chơi mô phỏng bắn súng 3D trong không gian Oxyz, một xạ thủ đang ngắm với tọa độ khe ngắm và đầu ruồi lần lượt là là M(3; 3; 1,5), N(3; 4; 1,5). Viết phương trình tham số của đường ngắm bắn của xạ thủ (xem như đường thẳng MN).
Câu 4:
Trong không gian Oxyz, cho hình lăng trụ đứng OBC.O'B'C' có đáy là tam giác OBC vuông tại O. Cho biết B(3; 0; 0), C(0; 1; 0), O'(0; 0; 2). Tính góc giữa:
a) hai đường thẳng BO' và B'C;
b) hai mặt phẳng (O'BC) và (OBC);
c) đường thẳng B'C và mặt phẳng (O'BC)
Câu 5:
Một phần mềm mô phỏng vận động viên đang tập bắn súng trong không gian Oxyz. Cho biết trục d của nòng súng và cọc đỡ bia d' có phương trình lần lượt là:
\(d:\left\{ \begin{array}{l}x = t\\y = 20\\z = 9\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = 10\\y = 20\\z = 1 + 3t'\end{array} \right.\). Xét vị trí tương đối giữa d và d', chúng có vuông góc với nhau không?
Câu 6:
Trên phần mềm mô phỏng 3D một máy khoan trong không gian Oxyz, cho biết phương trình trục a của mũi khoan và một đường rãnh b trên vật cần khoan (Hình 18) lần lượt là: \(a:\left\{ \begin{array}{l}x = 1\\y = 2\\z = 3t\end{array} \right.\) và \(b:\left\{ \begin{array}{l}x = 1 + 4t'\\y = 2 + 2t'\\z = 6\end{array} \right.\).
a) Chứng minh a, b vuông góc và cắt nhau.
b) Tìm giao điểm của a và b.
Câu 7:
Viết phương trình tham số của đường thẳng d đi qua điểm A(1; 0; 1) và song song với đường thẳng d': \(\frac{{x + 1}}{3} = \frac{{y - 1}}{2} = \frac{{z - 1}}{4}\).
về câu hỏi!