Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính của mặt cầu đó.
a) x2 + y2 + z2 + 4z – 32 = 0;
b) x2 + y2 + z2 + 2x + 2y – 2z + 4 = 0.
Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính của mặt cầu đó.
a) x2 + y2 + z2 + 4z – 32 = 0;
b) x2 + y2 + z2 + 2x + 2y – 2z + 4 = 0.
Câu hỏi trong đề: Giải SGK Toán 12 CTST Bài 3. Phương trình mặt cầu có đáp án !!
Quảng cáo
Trả lời:
a) Phương trình x2 + y2 + z2 + 4z – 32 = 0 có dạng x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với a = 0; b = 0; c = −2; d = −32.
Ta có a2 + b2 + c2 – d = (−2)2 + 32 = 34 > 0.
Do đó đây là phương trình mặt cầu với I(0; 0; −2) và .
b) Phương trình x2 + y2 + z2 + 2x + 2y – 2z + 4 = 0 có dạng x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với a = −1; b = −1; c = 1; d = 4.
Có a2 + b2 + c2 – d = (−1)2 + (−1)2 + 12 – 4 = −1 < 0.
Do đó đây không phải là phương trình mặt cầu.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Tâm của bồn chứa I(6; 6; 6) và bán kính R = 5.
b) Ta có \(d\left( {I,(P)} \right) = \frac{{\left| {6 - 10} \right|}}{{\sqrt {{1^2}} }} = 4\).
Lời giải
Tọa độ tâm I(300; 400; 2000), R = 1.
Khoảng cách từ tâm của quả bóng đến mặt đất có phương trình z = 0 là
(mét).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.