Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Chương trình khác
Môn học
157 lượt thi câu hỏi
139 lượt thi
Thi ngay
40 lượt thi
169 lượt thi
47 lượt thi
54 lượt thi
96 lượt thi
108 lượt thi
Câu 1:
Ta đã biết trong mặt phẳng tọa độ Oxy, phương trình đường tròn tâm I(a; b), bán kính R có dạng: (x – a)2 + (y – b)2 = R2.
Trong không gian Oxyz, phương trình mặt cầu có dạng như thế nào?
Trong không gian Oxyz, cho mặt cầu S(I; R) có tâm I(a; b; c) và bán kính R.
Xét một điểm M(x; y; z) thay đổi.
a) Tính khoảng cách IM theo x, y, z và a, b, c.
b) Nêu điều kiện cần và đủ của x, y, z để điểm M(x; y; z) nằm trên mặt cầu S(I; R).
Câu 2:
Viết phương trình mặt cầu (S):
a) Có tâm I(3; −2; −4), bán kính R = 10;
b) Có đường kính EF với E(3; −1; 8) và F(7; −3; 0);
c) Có tâm M(−2; 1; 3) và đi qua điểm N(2; −3; −4).
Câu 3:
Trong không gian Oxyz (đơn vị của các trục tọa độ là mét), các nhà nghiên cứu khí tượng dùng một phần mềm mô phỏng bề mặt của một quả bóng thám không có dạng hình cầu bằng phương trình (x – 300)2 + (y – 400)2 + (z – 2000)2 = 1. Tìm tọa độ tâm, bán kính của quả bóng và tính khoảng cách từ tâm của quả bóng đến mặt đất có phương trình z = 0.
Câu 4:
a) Trong không gian Oxyz, cho điểm M(x; y; z) thay đổi có tọa độ luôn thỏa mãn phương trình x2 + y2 + z2 – 2x – 4y – 6z – 11 = 0. (*)
i) Biến đổi (*) về dạng: (x – 1)2 + (y – 2)2 + (z – 3)2 = 25.
ii) Chứng tỏ M(x; y; z) luôn thuộc mặt cầu (S). Tìm tâm và bán kính của (S).
b) Bằng cách biến đổi phương trình x2 + y2 + z2 – 2x – 4y – 6z + 15 = 0 (**) về dạng (x – 1)2 + (y – 2)2 + (z – 3)2 = −1, hãy cho biết phương trình (**) có thể là phương trình mặt cầu hay không?
Câu 5:
Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính của mặt cầu đó.
a) x2 + y2 + z2 + 4z – 32 = 0;
b) x2 + y2 + z2 + 2x + 2y – 2z + 4 = 0.
Câu 6:
Bề mặt của một bóng thám không dạng hình cầu có phương trình x2 + y2 + z2 – 200x – 600y – 4000z + 4099900 = 0. Tìm tọa độ tâm và bán kính mặt cầu.
Câu 7:
Đầu in phun của một máy in 3D đang in bề mặt của một mặt cầu có phương trình x2+y2+z2+18x−18y−z+116=0. Tính khoảng cách từ đầu in phun đến tâm mặt cầu.
Câu 8:
a) Có tâm I(7; −3; 0), bán kính R = 8;
b) Có tâm M(3; 1; −4) và đi qua điểm N(1; 0; 1);
c) Có đường kính AB với A(4; 6; 8) và B(2; 4; 4).
Câu 9:
a) x2 + y2 + z2 + 5x – 7y + z – 1 = 0;
b) x2 + y2 + z2 + 4x + 6y – 2z + 100 = 0;
c) x2 + y2 + z2 – x – y – z + \(\frac{1}{2}\) = 0.
Câu 10:
Cho hai điểm A(1; 0; 0) và B(5; 0; 0). Chứng minh rằng nếu điểm M(x; y; z) thỏa mãn MA→.MB→=0 thì M thuộc một mặt cầu (S). Tìm tâm và bán kính của (S).
Câu 11:
Phần mềm mô phỏng thiết bị thám hiểm đại dương có dạng hình cầu trong không gian Oxyz. Cho biết tọa độ tâm mặt cầu là I(360; 200; 400) và bán kính r = 2 m. Viết phương trình mặt cầu.
Câu 12:
Người ta muốn thiết kế một bồn chứa khí hóa lỏng hình cầu bằng phần mềm 3D. Cho biết phương trình bề mặt của bồn chứa là (S): (x – 6)2 + (y – 6)2 + (z – 6)2 = 25. Phương trình mặt phẳng chứa nắp là (P): z = 10.
a) Tìm tâm và bán kính của bồn chứa.
b) Tính khoảng cách từ tâm bồn chứa đến mặt phẳng chứa nắp.
31 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com