Cho hai điểm A(1; 0; 0) và B(5; 0; 0). Chứng minh rằng nếu điểm M(x; y; z) thỏa mãn thì M thuộc một mặt cầu (S). Tìm tâm và bán kính của (S).
Cho hai điểm A(1; 0; 0) và B(5; 0; 0). Chứng minh rằng nếu điểm M(x; y; z) thỏa mãn thì M thuộc một mặt cầu (S). Tìm tâm và bán kính của (S).
Quảng cáo
Trả lời:

Ta có \(\overrightarrow {MA} = \left( {x - 1;y;z} \right),\overrightarrow {MB} = \left( {x - 5;y;z} \right)\).
Có \(\overrightarrow {MA} .\overrightarrow {MB} = 0\) Û (x – 1)(x – 5) + y2 + z2 = 0
Û x2 – 6x + 9 + y2 + z2 – 4 = 0
Û (x – 3)2 + y2 + z2 = 4.
Do đó M luôn thuộc mặt cầu tâm I(3; 0; 0) và R = 2.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Tâm của bồn chứa I(6; 6; 6) và bán kính R = 5.
b) Ta có \(d\left( {I,(P)} \right) = \frac{{\left| {6 - 10} \right|}}{{\sqrt {{1^2}} }} = 4\).
Lời giải
Tọa độ tâm I(300; 400; 2000), R = 1.
Khoảng cách từ tâm của quả bóng đến mặt đất có phương trình z = 0 là
(mét).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.