Câu hỏi:

12/07/2024 763

Cho ba mặt phẳng (α): x + y + 2z + 1 = 0, (β): x + y – z + 2 = 0 và (γ): x – y + 5 = 0. Trong các mệnh đề sau, mệnh đề nào sai?

A. (α) ^ (β).

B. (γ) ^ (β).

C. (α) // (β).

D. (α) ^ (γ).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Mặt phẳng (α), (β), (γ) có vectơ pháp tuyến lần lượt là

\(\overrightarrow {{n_\alpha }} = \left( {1;1;2} \right),\overrightarrow {{n_\beta }} = \left( {1;1; - 1} \right),\overrightarrow {{n_\gamma }} = \left( {1; - 1;0} \right)\).

\(\overrightarrow {{n_\alpha }} .\overrightarrow {{n_\beta }} = 1.1 + 1.1 + 2.\left( { - 1} \right) = 0\). Do đó (α) ^ (β).

\(\overrightarrow {{n_\beta }} .\overrightarrow {{n_\gamma }} = 1.1 + 1.\left( { - 1} \right) + \left( { - 1} \right).0 = 0\). Do đó (γ) ^ (β).

\(\overrightarrow {{n_\alpha }} .\overrightarrow {{n_\gamma }} = 1.1 + 1.\left( { - 1} \right) + 2.0 = 0\). Do đó (α) ^ (γ).

\(\overrightarrow {{n_\alpha }} \)\(\overrightarrow {{n_\beta }} \) không cùng phương với nhau nên hai mặt phẳng này không song song.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình hộp chữ nhật OABC.O'A'B'C', với O là gốc tọa độ, A(2; 0; 0), C(0; 6; 0), O'(0; 0; 4). Viết phương trình: a) Mặt phẳng (O'AC); b) Đường thẳng CO'; c) Mặt cầu đi qua các đỉnh của hình hộp. (ảnh 1)

a) Mặt phẳng đoạn chắn của (O'AC) là \(\frac{x}{2} + \frac{y}{6} + \frac{z}{4} = 1\) Û 6x + 2y + 3z – 12 = 0.

b) Đường thẳng CO' đi qua C(0; 6; 0) nhận \(\frac{1}{2}\overrightarrow {CO'} = \left( {0; - 3;2} \right)\) làm vectơ chỉ phương có phương trình là \(\left\{ \begin{array}{l}x = 0\\y = 6 - 3t\\z = 2t\end{array} \right.\).

c) Mặt cầu đi qua các đỉnh của hình hộp có tâm I là trung điểm của O'B và bán kính IO'.

Có B(2; 6; 0), O'(0; 0; 4). Suy ra I(1; 3; 2) và \(IO' = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 3} \right)}^2} + {{\left( {4 - 2} \right)}^2}} = \sqrt {14} \).

Phương trình mặt cầu là: (x – 1)2 + (y – 3)2 + (z – 2)2 = 14.

Lời giải

a) Ta có A(70; 0; 0), B(70; 0; −60), C(70; 80; 0), D(50; 0; 0).

b) Ta có \(\overrightarrow {AB} = \left( {0;0; - 60} \right),\overrightarrow {AC} = \left( {0;80;0} \right)\), \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {4800;0;0} \right)\).

Mặt phẳng (ABC) đi qua A(70; 0; 0), nhận \(\overrightarrow n = \frac{1}{{4800}}\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {1;0;0} \right)\) có phương trình là x – 70 = 0.

\(\overrightarrow {AC} = \left( {0;80;0} \right)\), \(\overrightarrow {AD} = \left( { - 20;0;0} \right)\), \(\left[ {\overrightarrow {AC} ,\overrightarrow {AD} } \right] = \left( {0;0;1600} \right)\).

Mặt phẳng (ACD) đi qua A(70; 0; 0), nhận \(\overrightarrow n = \frac{1}{{1600}}\left[ {\overrightarrow {AC} ,\overrightarrow {AD} } \right] = \left( {0;0;1} \right)\) có phương trình là z = 0.

c) Đường thẳng AC đi qua A(70; 0; 0) và nhận \(\overrightarrow a = \frac{1}{{80}}\overrightarrow {AC} = \left( {0;1;0} \right)\) có phương trình tham số là \(\left\{ \begin{array}{l}x = 70\\y = t\\z = 0\end{array} \right.\).

d) \(d\left( {M,\left( {ABC} \right)} \right) = \frac{{\left| {0 - 70} \right|}}{{\sqrt {{1^2}} }} = 70\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay