Câu hỏi:

12/07/2024 2,048

Khảo sát sự biến thiên và vẽ đồ thị của mỗi hàm số sau:
y = .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

y =

1) Tập xác định: D = ℝ\{−2}.

2) Sự biến thiên.

Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận.

Ta có: y = +∞, y = −∞.

           y = +∞, y = −∞.

Do đó, đường thẳng x = – 2 là tiệm cận đứng của đồ thị hàm số.

= = = 1.

(y – x) = = = 0.

Do đó, đường thẳng y = x là tiệm cận xiên của đồ thị hàm số.

Ta có: y' = = > 0, với x D.

Ta có bảng biến thiên như sau:

Hàm số đồng biến trên các khoảng (−∞; −2) và (−2; +∞).

3) Đồ thị

Đồ thị hàm số nhận đường thẳng x = − 2 làm tiệm cận đứng và y = x làm tiệm cận xiên.

Giao của đồ thị với trục tung tại điểm ; giao của đồ thị với trục hoành tại các điểm (1; 0); (−3; 0).

Đồ thị hàm số đi qua các điểm: ; (1; 0); (−3; 0); (−1; −4); (−5; −4);

Ta có đồ thị như sau:

Đồ thị hàm số nhận giao điểm của hai đường tiệm cận có tọa độ (−2; −2) làm tâm đối xứng và nhận phân giác của các góc tạo bởi hai đường tiệm cận đó làm trục đối xứng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Ta có: y =

Tập xác định: D = ℝ\{−1}.

Đồ thị hàm số này có đường tiệm cận đứng x = −1 nên có thể là phương án B hoặc D.

Có hệ số của x2 ở tử là a = 1 và hệ số của x ở mẫu là m = 1 nên a, m cùng dấu.

Vậy phương án đúng là B.

Lời giải

a) S

b) Đ

c) Đ

d) S

 

Tiệm cận đứng của đồ thị hàm số là đường thẳng x = −n nằm bên trái trục tung nên

−n < 0 hay n > 0.

Tiệm cận xiên có hệ số góc là a có hướng đi lên từ trái sang phải nên a > 0.

Đồ thị cắt trục tung tại điểm (0; ) nằm về phía trên trục hoành nên c > 0.

Đồ thị cắt trục hoành tại hai điểm có hoành độ âm nên phương trình ax2 + bx + c = 0 có hai nghiệm âm phân biệt nên < 0 hay b > 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP