Câu hỏi:

16/08/2024 2,701 Lưu

Giải các hệ phương trình:

a) 3x2y=10x23y=313;

b) xy=23x+y+10=0;

c) x3y=03x2y=2;

d) 3x5y=25x33y=215.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) 3x2y=10x23y=313

3x2y=103x32y3=103

 

Nhân hai vế của phương trình thứ hai của hệ với 3, ta được 3x2y=103x2y=10.

Trừ từng vế phương trình thứ nhất và phương trình thứ hai của hệ, ta được:

0x = 0. Phương trình này nghiệm đúng với mọi x ℝ.

Vậy hệ phương trình có vô số nghiệm. Các nghiệm của hệ được viết như sau: xy=32x5.

b) Điều kiện: y ≠ 0.

xy=23x+y+10=0

3x=2yx+y=10

3x2y=0    1x+y=10    2

 

Từ phương trình (2), ta có: y = – 10 – x. (3)

Thay y = – 10 – x vào phương trình (1), ta được: 3x – 2.(–10 – x) = 0. (4)

Giải phương trình (4):

3x – 2.(–10 – x) = 0

3x + 20 + 2x = 0

5x = –20

x = –4.

Thay x = –4 vào phương trình (3), ta được: y = –10 – (–4) = –6.

Vậy hệ phương trình có nghiệm duy nhất là (–4; –6).

c) x3y=03x2y=2

x=3y33y2y=2

x=3y3y2y=2

x=3yy=2

x=23y=2.

Vậy hệ phương trình có nghiệm duy nhất là 23;2.

d) 3x5y=2                   55x33y=215      6

Nhân hai vế của phương trình (5) với 5  nhân hai vế của phương trình (2) với 3 ta được15x+5y=2515x9y=65.

Cộng từng vế hai phương trình của hệ, ta được: 4y=45, suy ra y=5.

Thay y=5 vào phương trình (5), ta được:

3x55=2, hay 3x+5=2, do đó x=3. 

Vậy hệ phương trình có nghiệm duy nhất là 3;5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x (m), y (m) lần lượt là chiều dài và chiều rộng của mảnh vườn (x > 0, y > 0).

Chu vi mảnh vườn là 360 m, nên nửa chu vi của mảnh vườn là: 360 : 2 = 180 (m).

Do đó, ta có phương trình: x + y = 180. (1)

Mảnh vườn có chiều dài bằng 54 lần chiều rộng nên ta có phương trình:

x=54y hay 4x 5y = 0. (2)

Từ (1) và (2), ta có hệ phương trình x+y=180    14x5y=0    2

Giải hệ phương trình: x+y=180    14x5y=0    2

Nhân hai vế của phương trình (1) với ‒4, ta được: 4x4y=7204x5y=0.

Cộng từng vế hai phương trình của hệ trên, ta được:

9y = 720, suy ra y = 80.

Thay y = 80 vào phương trình (1), ta được:

x + 80 = 180, do đó x = 100.

Ta thấy x = 100, y = 80 thoả mãn điều kiện.

Vậy chiều dài của mảnh vườn là 100 m, chiều rộng của mảnh vườn là 80 m.

Lời giải

Đổi 30 phút = 0,5 giờ.

Gọi x (giờ) và y (giờ) lần lượt là thời gian ô tô di chuyển hết quãng đường AB và BC (x > 0, y > 0).

Do thời gian ô tô đi hết quãng đường AB ít hơn thời gian đi hết quãng đường BC là 30 phút nên ta có y – x = 0,5 hay x – y = –0,5. (1)

Quãng đường AB ô tô di chuyển với tốc độ 60 km/h là: 60x (km).

Quãng đường BC ô tô di chuyển với tốc độ 55 km/h là: 55y (km).

Tổng chiều dài quãng đường AB và BC là:

60x + 55y = 200 hay 12x + 11y = 40. (2)

Từ (1) và (2) ta có hệ phương trình: xy=0,512x+11y=44.

Giải hệ phương trình: xy=0,5                112x+11y=40      2

Nhân hai vế của phương trình (1) với 12, ta được: 12x12y=612x+11y=40.

Trừ từng vế của phương trình thứ hai và phương trình thứ nhất, ta được:

23y = 46, suy ra y = 2.

Thay y = 2 vào phương trình (1), ta được: x – 2 = –0,5, do đó x = 1,5.

Ta thấy x = 1,5 và y = 2 (thoả mãn điều kiện).

Đổi x = 1,5 (giờ) = 1 giờ 30 phút.

Vậy thời gian di chuyển hết quãng đường AB là 1 giờ 30 phút, thời gian ô tô di chuyển hết quãng đường BC là 2 giờ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP