Câu hỏi:

13/08/2024 5,696 Lưu

Để tổ chức tham quan khu di tích Bến Nhà Rồng (Thành phố Hồ Chí Minh) cho 195 người gồm học sinh khối lớp 9 và giáo viên phụ trách, nhà trường đã thuê 5 chiếc xe gồm hai loại: loại 45 chỗ và loại 30 chỗ. Hỏi nhà trường cần thuê bao nhiêu xe mỗi loại để chở hết số người đó? (Biết rằng trường mong muốn các xe không còn chỗ trống.)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi x (xe) và y (xe) lần lượt là số xe loại 45 chỗ và 30 chỗ (x ℕ*, y *).

Do nhà trường đã thuê 5 chiếc xe gồm hai loại 45 chỗ và 30 chỗ nên ta có:

x + y = 5. (1)

Số người ngồi trên các xe 45 chỗ là: 45x (người).

Số người ngồi trên các xe 30 chỗ là: 30y (người).

Do có tất cả 195 người chia vào tất cả các xe nên ta có: 45x + 30y = 195. (2)

Từ (1) và (2), ta có hệ phương trình: x+y=5                        145x+30y=195     2

Giải hệ phương trìnhx+y=5                        145x+30y=195     2

Nhân hai vế của phương trình (1) với ‒45, ta được: 45x45y=22545x+30y=195.

Cộng từng vế hai phương trình của hệ, ta được: 15y = 30, suy ra y = 2.

Thay y = 2 vào phương trình (1), ta được: x + 2 = 5, do đó x = 3.

Ta thấy x = 3 và y = 2 thoả mãn điều kiện.

Vậy nhà trường cần thuê 3 xe loại 45 chỗ và 2 xe loại 30 chỗ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x (m), y (m) lần lượt là chiều dài và chiều rộng của mảnh vườn (x > 0, y > 0).

Chu vi mảnh vườn là 360 m, nên nửa chu vi của mảnh vườn là: 360 : 2 = 180 (m).

Do đó, ta có phương trình: x + y = 180. (1)

Mảnh vườn có chiều dài bằng 54 lần chiều rộng nên ta có phương trình:

x=54y hay 4x 5y = 0. (2)

Từ (1) và (2), ta có hệ phương trình x+y=180    14x5y=0    2

Giải hệ phương trình: x+y=180    14x5y=0    2

Nhân hai vế của phương trình (1) với ‒4, ta được: 4x4y=7204x5y=0.

Cộng từng vế hai phương trình của hệ trên, ta được:

9y = 720, suy ra y = 80.

Thay y = 80 vào phương trình (1), ta được:

x + 80 = 180, do đó x = 100.

Ta thấy x = 100, y = 80 thoả mãn điều kiện.

Vậy chiều dài của mảnh vườn là 100 m, chiều rộng của mảnh vườn là 80 m.

Lời giải

Đổi 30 phút = 0,5 giờ.

Gọi x (giờ) và y (giờ) lần lượt là thời gian ô tô di chuyển hết quãng đường AB và BC (x > 0, y > 0).

Do thời gian ô tô đi hết quãng đường AB ít hơn thời gian đi hết quãng đường BC là 30 phút nên ta có y – x = 0,5 hay x – y = –0,5. (1)

Quãng đường AB ô tô di chuyển với tốc độ 60 km/h là: 60x (km).

Quãng đường BC ô tô di chuyển với tốc độ 55 km/h là: 55y (km).

Tổng chiều dài quãng đường AB và BC là:

60x + 55y = 200 hay 12x + 11y = 40. (2)

Từ (1) và (2) ta có hệ phương trình: xy=0,512x+11y=44.

Giải hệ phương trình: xy=0,5                112x+11y=40      2

Nhân hai vế của phương trình (1) với 12, ta được: 12x12y=612x+11y=40.

Trừ từng vế của phương trình thứ hai và phương trình thứ nhất, ta được:

23y = 46, suy ra y = 2.

Thay y = 2 vào phương trình (1), ta được: x – 2 = –0,5, do đó x = 1,5.

Ta thấy x = 1,5 và y = 2 (thoả mãn điều kiện).

Đổi x = 1,5 (giờ) = 1 giờ 30 phút.

Vậy thời gian di chuyển hết quãng đường AB là 1 giờ 30 phút, thời gian ô tô di chuyển hết quãng đường BC là 2 giờ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP