Câu hỏi:
12/08/2024 1,718Trong tháng 9, hai tổ sản xuất được 1 100 chi tiết máy. Sang tháng 10, tổ Một sản xuất vượt mức 15%, tổ Hai sản xuất vượt mức 20% so với tháng 9, do đó tháng 10 hai tổ sản xuất được 1 295 chi tiết máy. Hỏi trong tháng 9 mỗi tổ sản xuất được bao nhiêu chi tiết máy?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi x, y lần lượt là số chi tiết máy tổ Một và tổ Hai sản xuất được trong tháng 9 (x ∈ ℕ*, y ∈ ℕ*).
Số chi tiết máy hai tổ sản xuất được trong tháng 9 là: x + y (chi tiết máy).
Do trong tháng 9, hai tổ sản xuất được 1 100 chi tiết máy nên ta có phương trình:
x + y = 1 100. (1)
Số chi tiết máy tổ 1 sản xuất trong tháng 10 là: x + 15%x = 1,15x (chi tiết máy).
Số chi tiết máy tổ 2 sản xuất trong tháng 10 là: y + 20%y = 1,2y (chi tiết máy).
Do tháng 10 hai tổ sản xuất được 1 295 chi tiết máy nên ta có phương trình:
1,15x + 1,2y = 1 295. (2)
Từ (1) và (2) ta có hệ phương trình:
Giải hệ phương trình
Nhân hai vế của phương trình (1) với –1,15, ta được:
Cộng từng vế hai phương trình của hệ, ta được:
0,05y = 30, suy ra y = 600.
Thay y = 600 vào phương trình (1) ta được: x + 600 = 1 100. Do đó x = 500.
Ta thấy x = 500, y = 600 thoả mãn điều kiện.
Vậy trong tháng 9, tổ Một sản xuất được 500 chi tiết máy, tổ Hai sản xuất được 600 chi tiết máy.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một mảnh vườn hình chữ nhật có chu vi 360 m. Biết chiều dài của mảnh vườn bằng lần chiều rộng. Tính chiều dài và chiều rộng của mảnh vườn.
Câu 2:
Một ô tô di chuyển trên quãng đường AB với tốc độ 60 km/h, rồi tiếp tục di chuyển trên quãng đường BC với tốc độ 55 km/h. Biết tổng chiều dài quãng đường AB và BC là 200 km và thời gian ô tô đi hết quãng đường AB ít hơn thời gian đi hết quãng đường BC là 30 phút. Tính thời gian ô tô di chuyển hết mỗi quãng đường.
Câu 3:
Để tổ chức tham quan khu di tích Bến Nhà Rồng (Thành phố Hồ Chí Minh) cho 195 người gồm học sinh khối lớp 9 và giáo viên phụ trách, nhà trường đã thuê 5 chiếc xe gồm hai loại: loại 45 chỗ và loại 30 chỗ. Hỏi nhà trường cần thuê bao nhiêu xe mỗi loại để chở hết số người đó? (Biết rằng trường mong muốn các xe không còn chỗ trống.)
Câu 4:
Xác định a, b để đồ thị hàm số y = ax + b đi qua hai điểm A và B trong mỗi trường hợp sau:
a) A(1; 1) và B(3; 7);
b) A(2; 1) và B(4; –3).
Câu 6:
Một vật là hợp kim của đồng và kẽm có khối lượng 124 g và thể tích 15 cm3. Tính xem trong đó có bao nhiêu gam đồng và bao nhiêu gam kẽm, biết rằng cứ 89 g đồng thì có thể tích là 10 cm3 và 7 g kẽm có thể tích là 1 cm3.
về câu hỏi!