Câu hỏi:
21/08/2024 124Trong không gian Oxyz, cho đường thẳng
∆: \(\left\{ \begin{array}{l}x = 1 + t\\y = 2t\\z = - 1 - 2t\end{array} \right.\) và mặt phẳng (P): 2x + y + z + 5 = 0.
a) Tìm tọa độ giao điểm I của đường thẳng ∆ và mặt phẳng (P).
b) Viết phương trình đường thẳng ∆' nằm trên mặt phẳng (P) đồng thời cắt ∆ và vuông góc với ∆.
c) Tính góc giữa đường thẳng ∆ và mặt phẳng (P).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có I thuộc d nên I có dạng I(1 + t; 2t; −1 – 2t).
I cũng thuộc (P) nên thay I vào phương tình mặt phẳng (P), ta được:
2(1 + t) + 2t + (−1 – 2t) + 5 = 0
⇔ 2t + 6 = 0
⇔ t = −3.
⇒ I(−2; −6; 5).
b) Ta có: \(\overrightarrow {{u_\Delta }} \) = (1; 2; −2), \(\overrightarrow {{n_P}} \) = (2; 1; 1).
⇒ \(\overrightarrow {{u_{\Delta '}}} = \left[ {\overrightarrow {{u_\Delta }} ,\overrightarrow {{n_P}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&{ - 2}\\1&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&1\\1&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\2&1\end{array}} \right|} \right)\) = (4; −5; −3) là vectơ chỉ phương của đường thẳng ∆'.
Đường thẳng ∆' qua I nên ta có phương trình đường thẳng như sau: \(\left\{ \begin{array}{l}x = - 2 + 4t\\y = - 6 - 5t\\z = 5 - 3t\end{array} \right.\).
c) Ta có: \(\overrightarrow {{u_\Delta }} \) = (1; 2; −2), \(\overrightarrow {{n_P}} \) = (2; 1; 1).
Do đó, sin(∆, (P)) = \(\left| {\cos \left( {{{\overrightarrow u }_\Delta },{{\overrightarrow n }_{\left( P \right)}}} \right)} \right| = \frac{{\left| {{{\overrightarrow u }_\Delta }.{{\overrightarrow n }_{\left( P \right)}}} \right|}}{{\left| {{{\overrightarrow u }_\Delta }} \right|.\left| {{{\overrightarrow n }_{\left( P \right)}}} \right|}} = \frac{{\left| {1.2 + 2.1 + \left( { - 2} \right).1} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{2^2} + {1^2} + {1^2}} }} = \frac{{\sqrt 6 }}{9}\).
⇒ (∆, (P)) ≈ 15,8°.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian Oxyz, cho hai đường thẳng:
∆: \(\left\{ \begin{array}{l}x = 2 + 3t\\y = 1 + 2t\\z = - 1 + t\end{array} \right.\) và ∆': \(\left\{ \begin{array}{l}x = - 1 + s\\y = 2 - s\\z = 3 + 2s.\end{array} \right.\)
a) Xét vị trí tương đối của hai đường thẳng ∆ và ∆'.
b) Tính côsin của góc giữa hai đường thẳng ∆ và ∆'.
c) Viết phương trình đường thẳng d đi qua A(−3; 2; 2) và song song với đường thẳng ∆.
Câu 2:
Trong không gian Oxyz, mặt sàn nằm ngang của một ngôi nhà thuộc mặt phẳng (Oxy), một mái và một ngôi nhà thuộc mặt phẳng (α): x + y + z – 1 = 0. Hỏi mái nhà có độ dốc bằng bao nhiêu độ?
Câu 3:
Trong không gian Oxyz, cho ba điểm A(2; 3; −1), B(−1; 2; 0) và C(3; 1; 2).
a) Viết phương trình mặt phẳng (ABC).
b) Viết phương trình tham số và phương trình chính tắc của đường thẳng AB.
Câu 4:
Trong không gian Oxyz, cho mặt phẳng (P): 2x + 3y – z – 1 = 0 và điểm A(1; 2; −1). Phương trình chính tắc của đường thẳng d đi qua A và vuông góc với mặt phẳng (P) là
A. \(\frac{{x + 2}}{2} = \frac{{y + 2}}{3} = \frac{{z - 1}}{{ - 1}}\).
B. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z + 1}}{{ - 1}}\).
C. \(\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z + 1}}{{ - 1}}\).
D. \(\frac{{x + 1}}{1} = \frac{{y + 2}}{2} = \frac{{z - 1}}{{ - 1}}\).
Câu 5:
Trong không gian Oxyz, cho hai đường thẳng:
∆: \(\left\{ \begin{array}{l}x = 1 - t\\y = 2 + t\\z = - 1 + 2t\end{array} \right.\) và ∆': \(\frac{{x - 2}}{2} = \frac{{y - 1}}{1} = \frac{{z + 3}}{{ - 3}}\).
Vị trí tương đối của hai đường thẳng này là
A. chéo nhau.
B. cắt nhau.
C. song song.
D. trùng nhau.
Câu 6:
Trong không gian Oxyz, trong khoảng thời gian từ 0 đến 1, một vật thể chuyển động sao cho tại mỗi thời điểm t ∈ [0; 1], vật thể đó ở vị trí M\(\left( {\frac{1}{{\sqrt 2 }}\sin t;\sqrt {\sqrt 2 \sin t\cos t} ;\frac{1}{{\sqrt 2 }}\sin t - \cos t} \right)\). Hỏi trong quá trình chuyển động nói trên, vật thể luôn thuộc mặt cầu (S): x2 + y2 + z2 – 1 = 0 hay không?
Câu 7:
Trong không gian Oxyz, cho điểm P(2; 3; 5). Gọi A, B, C lần lượt là hình chiếu vuông góc của điểm P trên các trục Ox, Oy, Oz. Viết phương trình mặt phẳng (ABC).
về câu hỏi!