Câu hỏi:
21/08/2024 142Trong không gian Oxyz, cho mặt cầu (S): (x – 2)2 + (y + 1)2 + (z – 3)2 = 9 và điểm A(2; −1; 1).
a) Tìm tâm I và bán kính R của mặt cầu (S).
b) Chứng minh rằng điểm A nằm trong mặt cầu (S).
c) Viết phương trình mặt phẳng (P) đi qua điểm A sao cho khoảng cách từ tâm I của mặt cầu (S) đến mặt phẳng (P) là lớn nhất.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có: (x – 2)2 + (y + 1)2 + (z – 3)2 = 9
⇔ (x – 2)2 + (y + 1)2 + (z – 3)2 = 32
Mặt cầu có tâm I(2; −1; 3) và bán kính R = 3.
b) Ta có: IA = \(\sqrt {{{\left( {2 - 2} \right)}^2} + {{\left( { - 1 + 1} \right)}^2} + {{\left( {1 - 3} \right)}^2}} \) = 2 < 3 nên A nằm trong mặt cầu (S).
c) Kẻ IH vuông góc với mặt phẳng (P), có IH ≤ IA nên để IH lớn nhất thì H trùng với A hay \(\overrightarrow {IA} \) = (0; 0; −2) là vectơ pháp tuyến của mặt phẳng (P).
Do đó, phương trình mặt phẳng (P) là: −2(z – 1) = 0 hay z – 1 = 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian Oxyz, cho hai đường thẳng:
∆: \(\left\{ \begin{array}{l}x = 2 + 3t\\y = 1 + 2t\\z = - 1 + t\end{array} \right.\) và ∆': \(\left\{ \begin{array}{l}x = - 1 + s\\y = 2 - s\\z = 3 + 2s.\end{array} \right.\)
a) Xét vị trí tương đối của hai đường thẳng ∆ và ∆'.
b) Tính côsin của góc giữa hai đường thẳng ∆ và ∆'.
c) Viết phương trình đường thẳng d đi qua A(−3; 2; 2) và song song với đường thẳng ∆.
Câu 2:
Trong không gian Oxyz, mặt sàn nằm ngang của một ngôi nhà thuộc mặt phẳng (Oxy), một mái và một ngôi nhà thuộc mặt phẳng (α): x + y + z – 1 = 0. Hỏi mái nhà có độ dốc bằng bao nhiêu độ?
Câu 3:
Trong không gian Oxyz, cho ba điểm A(2; 3; −1), B(−1; 2; 0) và C(3; 1; 2).
a) Viết phương trình mặt phẳng (ABC).
b) Viết phương trình tham số và phương trình chính tắc của đường thẳng AB.
Câu 4:
Trong không gian Oxyz, cho mặt phẳng (P): 2x + 3y – z – 1 = 0 và điểm A(1; 2; −1). Phương trình chính tắc của đường thẳng d đi qua A và vuông góc với mặt phẳng (P) là
A. \(\frac{{x + 2}}{2} = \frac{{y + 2}}{3} = \frac{{z - 1}}{{ - 1}}\).
B. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z + 1}}{{ - 1}}\).
C. \(\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z + 1}}{{ - 1}}\).
D. \(\frac{{x + 1}}{1} = \frac{{y + 2}}{2} = \frac{{z - 1}}{{ - 1}}\).
Câu 5:
Trong không gian Oxyz, trong khoảng thời gian từ 0 đến 1, một vật thể chuyển động sao cho tại mỗi thời điểm t ∈ [0; 1], vật thể đó ở vị trí M\(\left( {\frac{1}{{\sqrt 2 }}\sin t;\sqrt {\sqrt 2 \sin t\cos t} ;\frac{1}{{\sqrt 2 }}\sin t - \cos t} \right)\). Hỏi trong quá trình chuyển động nói trên, vật thể luôn thuộc mặt cầu (S): x2 + y2 + z2 – 1 = 0 hay không?
Câu 6:
Trong không gian Oxyz, cho hai đường thẳng:
∆: \(\left\{ \begin{array}{l}x = 1 - t\\y = 2 + t\\z = - 1 + 2t\end{array} \right.\) và ∆': \(\frac{{x - 2}}{2} = \frac{{y - 1}}{1} = \frac{{z + 3}}{{ - 3}}\).
Vị trí tương đối của hai đường thẳng này là
A. chéo nhau.
B. cắt nhau.
C. song song.
D. trùng nhau.
Câu 7:
Trong không gian Oxyz, cho điểm P(2; 3; 5). Gọi A, B, C lần lượt là hình chiếu vuông góc của điểm P trên các trục Ox, Oy, Oz. Viết phương trình mặt phẳng (ABC).
về câu hỏi!