Trong không gian Oxyz, mặt sàn nằm ngang của một ngôi nhà thuộc mặt phẳng (Oxy), một mái và một ngôi nhà thuộc mặt phẳng (α): x + y + z – 1 = 0. Hỏi mái nhà có độ dốc bằng bao nhiêu độ?
Trong không gian Oxyz, mặt sàn nằm ngang của một ngôi nhà thuộc mặt phẳng (Oxy), một mái và một ngôi nhà thuộc mặt phẳng (α): x + y + z – 1 = 0. Hỏi mái nhà có độ dốc bằng bao nhiêu độ?
Quảng cáo
Trả lời:
Mặt phẳng nằm ngang (Oxy) có một vectơ pháp tuyến là \(\overrightarrow k \) = (0; 0; 1).
Mặt phẳng (α) có vectơ pháp tuyến là (1; 1; 1).
Ta có: cos((Oxy), (α)) = \(\left| {\cos \left( {\overrightarrow k ,\overrightarrow n } \right)} \right| = \frac{{\left| {\overrightarrow k .\overrightarrow n } \right|}}{{\left| {\overrightarrow k } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| {0.1 + 0.1 + 1.1} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} .\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{{\sqrt 3 }}{3}\).
⇒ ((Oxy), (α)) ≈ 54,7°.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có I thuộc d nên I có dạng I(1 + t; 2t; −1 – 2t).
I cũng thuộc (P) nên thay I vào phương tình mặt phẳng (P), ta được:
2(1 + t) + 2t + (−1 – 2t) + 5 = 0
⇔ 2t + 6 = 0
⇔ t = −3.
⇒ I(−2; −6; 5).
b) Ta có: \(\overrightarrow {{u_\Delta }} \) = (1; 2; −2), \(\overrightarrow {{n_P}} \) = (2; 1; 1).
⇒ \(\overrightarrow {{u_{\Delta '}}} = \left[ {\overrightarrow {{u_\Delta }} ,\overrightarrow {{n_P}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&{ - 2}\\1&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&1\\1&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\2&1\end{array}} \right|} \right)\) = (4; −5; −3) là vectơ chỉ phương của đường thẳng ∆'.
Đường thẳng ∆' qua I nên ta có phương trình đường thẳng như sau: \(\left\{ \begin{array}{l}x = - 2 + 4t\\y = - 6 - 5t\\z = 5 - 3t\end{array} \right.\).
c) Ta có: \(\overrightarrow {{u_\Delta }} \) = (1; 2; −2), \(\overrightarrow {{n_P}} \) = (2; 1; 1).
Do đó, sin(∆, (P)) = \(\left| {\cos \left( {{{\overrightarrow u }_\Delta },{{\overrightarrow n }_{\left( P \right)}}} \right)} \right| = \frac{{\left| {{{\overrightarrow u }_\Delta }.{{\overrightarrow n }_{\left( P \right)}}} \right|}}{{\left| {{{\overrightarrow u }_\Delta }} \right|.\left| {{{\overrightarrow n }_{\left( P \right)}}} \right|}} = \frac{{\left| {1.2 + 2.1 + \left( { - 2} \right).1} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{2^2} + {1^2} + {1^2}} }} = \frac{{\sqrt 6 }}{9}\).
⇒ (∆, (P)) ≈ 15,8°.
Lời giải
a) Đường thẳng ∆ đi qua A(2; 1; −1) và nhận vectơ \(\overrightarrow {{u_\Delta }} \) = (3; 2; 1) làm vectơ chỉ phương.
Đường thẳng ∆' đi qua B(−1; 2; 3) và nhận vectơ \(\overrightarrow {{u_{\Delta '}}} \) = (1; −1; 2) làm vectơ chỉ phương.
Ta có: \(\left[ {\overrightarrow {{u_\Delta }} ,\overrightarrow {{u_{\Delta '}}} } \right]\) = (5; −5; −5) và \(\overrightarrow {AB} \) = (−3; 1; 4) nên \(\left[ {\overrightarrow {{u_\Delta }} ,\overrightarrow {{u_{\Delta '}}} } \right].\overrightarrow {AB} \) = −40 ≠ 0.
Hai đường thẳng ∆ và ∆' chéo nhau.
b) Ta có: cos(∆, ∆') = \(\left| {\cos \left( {\overrightarrow {{u_\Delta }} ,\overrightarrow {{u_{\Delta '}}} } \right)} \right| = \frac{{\left| {\overrightarrow {{u_\Delta }} .\overrightarrow {{u_{\Delta '}}} } \right|}}{{\left| {\overrightarrow {{u_\Delta }} } \right|.\left| {\overrightarrow {{u_{\Delta '}}} } \right|}} = \frac{{\left| {3.1 + 2.\left( { - 1} \right) + 1.2} \right|}}{{\sqrt {{3^2} + {2^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {2^2}} }}\) = \(\frac{{\sqrt {21} }}{{14}}\).
c) Đường thẳng d song song với đường thẳng ∆ nên nhận \(\overrightarrow {{u_\Delta }} \) = (3; 2; 1) làm vectơ chỉ phương.
Phương trình đường thẳng d là: \(\frac{{x + 3}}{3} = \frac{{y - 2}}{2} = \frac{{z - 2}}{1}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.