Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Chương trình khác
Môn học
60 lượt thi câu hỏi
152 lượt thi
Thi ngay
56 lượt thi
127 lượt thi
80 lượt thi
113 lượt thi
59 lượt thi
163 lượt thi
123 lượt thi
Câu 1:
Trong không gian Oxyz, phương trình mặt phẳng (P) đi qua A(1; 0; −3) và nhận vectơ \(\overrightarrow n \) = (2; 1; 1) làm vectơ pháp tuyến là
A. 2x + y + z – 1 = 0.
B. 2x + y + z + 1 = 0.
C. x – 3z + 1 = 0.
D. x + 3x + 1 = 0.
Trong không gian Oxyz, một vectơ chỉ phương của đường thẳng có phương trình \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 3 - 2t\\z = - 2 + t\end{array} \right.\)là
A. \(\overrightarrow {{u_1}} \) = (1; 3; −2).
B. \(\overrightarrow {{u_2}} \) = (2; −2; 0).
C. \(\overrightarrow {{u_3}} \) = (2; 2; 1).
D. \(\overrightarrow {{u_4}} \) = (2; −2; 1).
Câu 2:
Trong không gian Oxyz, cho mặt phẳng (P): 2x + 3y – z – 1 = 0 và điểm A(1; 2; −1). Phương trình chính tắc của đường thẳng d đi qua A và vuông góc với mặt phẳng (P) là
A. \(\frac{{x + 2}}{2} = \frac{{y + 2}}{3} = \frac{{z - 1}}{{ - 1}}\).
B. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z + 1}}{{ - 1}}\).
C. \(\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z + 1}}{{ - 1}}\).
D. \(\frac{{x + 1}}{1} = \frac{{y + 2}}{2} = \frac{{z - 1}}{{ - 1}}\).
Câu 3:
Trong không gian Oxyz, côsin của góc giữa hai đường thẳng: ∆: \(\left\{ \begin{array}{l}x = 1 + 2t\\y = - 1 + t\\z = - 2 + t\end{array} \right.\) và ∆': \(\frac{{x + 2}}{1} = \frac{{y + 3}}{2} = \frac{{z - 1}}{{ - 5}}\) bằng
A. \(\frac{{\sqrt 5 }}{{30}}\).
B. \(\frac{{ - \sqrt 5 }}{{30}}\).
C. \(\frac{{3\sqrt 5 }}{{10}}\).
D. \(\frac{{ - 3\sqrt 5 }}{{10}}\).
Câu 4:
Trong không gian Oxyz, góc giữa đường thẳng ∆: \(\frac{{x + 3}}{1} = \frac{{y + 1}}{{\sqrt 2 }} = \frac{{z + 2}}{1}\) và mặt phẳng (Oxz) bằng
A. 45°.
B. 30°.
C. 60°.
D. 90°.
Câu 5:
Trong không gian Oxyz, phương trình mặt cầu (S) có tâm I(1; 2; −1) và (S) đi qua A(−1; 1; 0) là
A. (x – 1)2 + (y – 2)2 + (z + 1)2 = \(\sqrt 6 \).
B. (x + 1)2 + (y + 2)2 + (z − 1)2 = 6.
C. (x − 1)2 + (y − 2)2 + (z + 1)2 = 6.
D. (x + 1)2 + (y – 1)2 + z2 = 6.
Câu 6:
Trong không gian Oxyz, phương trình x2 + y2 + z2 – 2x + 4y + 1 = 0 là phương trình của mặt cầu có tâm I và bán kính R lần lượt là
A. I(−1; 2; 0); R = 2.
B. I(1; −2; 0); R = 2.
C. I(−1; 2; 0); R = 4.
D. I(1; −2; 0); R = 4.
Câu 7:
Trong không gian Oxyz, một vectơ pháp tuyến của mặt phẳng chứa đường thẳng
∆: \(\left\{ \begin{array}{l}x = 1 + t\\y = - 2 + 2t\\z = 3 - t\end{array} \right.\) và đi qua điểm A(2; −1; 1) là
A. \(\overrightarrow {{n_1}} \)= (3; −1; 1).
B. \(\overrightarrow {{n_2}} \) = (3; 1; −1).
C. \(\overrightarrow {{n_3}} \) = (1; −1; 3).
D. \(\overrightarrow {{n_4}} \) = (−1; 3; 1).
Câu 8:
Trong không gian Oxyz, khoảng cách từ điểm A(−2; 1; 0) đến mặt phẳng (P): 2x – 2y + z – 3 = 0 bằng
A. 2.
B. 6.
C. 3.
D. 9.
Câu 9:
Trong không gian Oxyz, cho hai đường thẳng:
∆: \(\left\{ \begin{array}{l}x = 1 - t\\y = 2 + t\\z = - 1 + 2t\end{array} \right.\) và ∆': \(\frac{{x - 2}}{2} = \frac{{y - 1}}{1} = \frac{{z + 3}}{{ - 3}}\).
Vị trí tương đối của hai đường thẳng này là
A. chéo nhau.
B. cắt nhau.
C. song song.
D. trùng nhau.
Câu 10:
Trong không gian Oxyz, cho ba điểm A(2; 3; −1), B(−1; 2; 0) và C(3; 1; 2).
a) Viết phương trình mặt phẳng (ABC).
b) Viết phương trình tham số và phương trình chính tắc của đường thẳng AB.
Câu 11:
∆: \(\left\{ \begin{array}{l}x = 2 + 3t\\y = 1 + 2t\\z = - 1 + t\end{array} \right.\) và ∆': \(\left\{ \begin{array}{l}x = - 1 + s\\y = 2 - s\\z = 3 + 2s.\end{array} \right.\)
a) Xét vị trí tương đối của hai đường thẳng ∆ và ∆'.
b) Tính côsin của góc giữa hai đường thẳng ∆ và ∆'.
c) Viết phương trình đường thẳng d đi qua A(−3; 2; 2) và song song với đường thẳng ∆.
Câu 12:
Trong không gian Oxyz, cho điểm I(3; −2; −1) và mặt phẳng (P): x – 2y – 2z + 3 = 0.
a) Tính khoảng cách từ điểm I đến mặt phẳng (P).
b) Viết phương trình mặt cầu (S) có tâm I và tiếp xúc (P).
c) Viết phương trình đường thẳng d đi qua I và d vuông góc với (P).
Câu 13:
Trong không gian Oxyz, cho đường thẳng
∆: \(\left\{ \begin{array}{l}x = 1 + t\\y = 2t\\z = - 1 - 2t\end{array} \right.\) và mặt phẳng (P): 2x + y + z + 5 = 0.
a) Tìm tọa độ giao điểm I của đường thẳng ∆ và mặt phẳng (P).
b) Viết phương trình đường thẳng ∆' nằm trên mặt phẳng (P) đồng thời cắt ∆ và vuông góc với ∆.
c) Tính góc giữa đường thẳng ∆ và mặt phẳng (P).
Câu 14:
∆: \(\left\{ \begin{array}{l}x = 3 + 2t\\y = - 2 + t\\z = 1 + 3t\end{array} \right.\) và ∆': \(\frac{{x + 2}}{3} = \frac{{y - 3}}{2} = \frac{{z - 1}}{{ - 2}}\).
a) Chứng minh rằng hai đường thẳng ∆ và ∆' chéo nhau.
b) Viết phương trình mặt phẳng (P) chứa ∆ và song song với đường thẳng ∆'.
Câu 15:
Trong không gian Oxyz, cho mặt cầu (S): (x – 2)2 + (y + 1)2 + (z – 3)2 = 9 và điểm A(2; −1; 1).
a) Tìm tâm I và bán kính R của mặt cầu (S).
b) Chứng minh rằng điểm A nằm trong mặt cầu (S).
c) Viết phương trình mặt phẳng (P) đi qua điểm A sao cho khoảng cách từ tâm I của mặt cầu (S) đến mặt phẳng (P) là lớn nhất.
Câu 16:
Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình của một mặt cầu? Xác định tâm và bán kính của mặt cầu đó.
a) x2 + y2 + z2 + 6x – 8z + 5 = 0.
b) x2 + y2 + z2 – 4x + 6z + 17 = 0.
c) 2x2 + 2y2 + 2z2 – 5 = 0.
Câu 17:
Trong không gian Oxyz, cho hai mặt phẳng (P): 2x + 2y – z + 8 = 0 và (Q): 2x + 2y – z + 2 = 0.
a) Chứng minh rằng (P) // (Q).
b) Tính khoảng cách giữa hai mặt phẳng (P) và (Q).
Câu 18:
Trong không gian Oxyz, cho điểm P(2; 3; 5). Gọi A, B, C lần lượt là hình chiếu vuông góc của điểm P trên các trục Ox, Oy, Oz. Viết phương trình mặt phẳng (ABC).
Câu 19:
Trong không gian Oxyz, cho hai điểm A(2; −1; −3); B(3; 0; −1) và mặt phẳng
(P): x – 3y – z – 5 = 0. Viết phương trình mặt phẳng (Q) chứa hai điểm A, B, đồng thời vuông góc với mặt phẳng (P).
Câu 20:
Trong không gian Oxyz, mặt sàn nằm ngang của một ngôi nhà thuộc mặt phẳng (Oxy), một mái và một ngôi nhà thuộc mặt phẳng (α): x + y + z – 1 = 0. Hỏi mái nhà có độ dốc bằng bao nhiêu độ?
Câu 21:
Trong không gian Oxyz, trong khoảng thời gian từ 0 đến 1, một vật thể chuyển động sao cho tại mỗi thời điểm t ∈ [0; 1], vật thể đó ở vị trí M\(\left( {\frac{1}{{\sqrt 2 }}\sin t;\sqrt {\sqrt 2 \sin t\cos t} ;\frac{1}{{\sqrt 2 }}\sin t - \cos t} \right)\). Hỏi trong quá trình chuyển động nói trên, vật thể luôn thuộc mặt cầu (S): x2 + y2 + z2 – 1 = 0 hay không?
Câu 22:
Trong không gian Oxyz, tại một phạm vi hẹp, (Oxy) là mặt phẳng nằm ngang. Một đường ống nước thẳng đi qua hai điểm A(1; 1; 2) và B(1; 2; 1). Hỏi đường ống nói trên nghiêng bao nhiêu độ (so với mặt phẳng ngang)?
12 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com