Câu hỏi:

21/08/2024 404

Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình của một mặt cầu? Xác định tâm và bán kính của mặt cầu đó.

a) x2 + y2 + z2 + 6x – 8z + 5 = 0.

b) x2 + y2 + z2 – 4x + 6z + 17 = 0.

c) 2x2 + 2y2 + 2z2 – 5 = 0.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Phương trình có các hệ số: a = −3, b = 0, c = 4 và d = 5.

a2 + b2 + c2 – d = (−3)2 + 02 +42 – 5 = 20 > 0.

Do đó, phương trình đã cho là phương trình mặt cầu có tâm I(−3; 0; 4) và bán kính

R = \(\sqrt {20} \).

b) Phương trình có các hệ số a = 2, b = 0, c = −3 và d =17.

a2 + b2 + c2 – d = 22 + 02 + (−3)2 – 17 = −4 < 0.

Do đó, phương trình đã cho không là phương trình mặt cầu.

c) Ta có: 2x2 + 2y2 + 2z2 – 5 = 0.

x2 + y2 + z2\(\frac{5}{2}\) = 0.

x2 + y2 + z2 = \(\frac{5}{2}\).

Do đó, phương trình đã cho là phương trình mặt cầu.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có I thuộc d nên I có dạng I(1 + t; 2t; −1 – 2t).

I cũng thuộc (P) nên thay I vào phương tình mặt phẳng (P), ta được:

2(1 + t) + 2t + (−1 – 2t) + 5 = 0

2t + 6 = 0

t = −3.

I(−2; −6; 5).

b) Ta có: \(\overrightarrow {{u_\Delta }} \) = (1; 2; −2), \(\overrightarrow {{n_P}} \) = (2; 1; 1).

\(\overrightarrow {{u_{\Delta '}}} = \left[ {\overrightarrow {{u_\Delta }} ,\overrightarrow {{n_P}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&{ - 2}\\1&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&1\\1&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\2&1\end{array}} \right|} \right)\) = (4; −5; −3) là vectơ chỉ phương của đường thẳng ∆'.

Đường thẳng ' qua I nên ta có phương trình đường thẳng như sau: \(\left\{ \begin{array}{l}x = - 2 + 4t\\y = - 6 - 5t\\z = 5 - 3t\end{array} \right.\).

c) Ta có: \(\overrightarrow {{u_\Delta }} \) = (1; 2; −2), \(\overrightarrow {{n_P}} \) = (2; 1; 1).

Do đó, sin(∆, (P)) = \(\left| {\cos \left( {{{\overrightarrow u }_\Delta },{{\overrightarrow n }_{\left( P \right)}}} \right)} \right| = \frac{{\left| {{{\overrightarrow u }_\Delta }.{{\overrightarrow n }_{\left( P \right)}}} \right|}}{{\left| {{{\overrightarrow u }_\Delta }} \right|.\left| {{{\overrightarrow n }_{\left( P \right)}}} \right|}} = \frac{{\left| {1.2 + 2.1 + \left( { - 2} \right).1} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{2^2} + {1^2} + {1^2}} }} = \frac{{\sqrt 6 }}{9}\).

(∆, (P)) ≈ 15,8°.

Lời giải

a) Đường thẳng ∆ đi qua A(2; 1; −1) và nhận vectơ \(\overrightarrow {{u_\Delta }} \) = (3; 2; 1) làm vectơ chỉ phương.

Đường thẳng ∆' đi qua B(−1; 2; 3) và nhận vectơ \(\overrightarrow {{u_{\Delta '}}} \) = (1; −1; 2) làm vectơ chỉ phương.

Ta có: \(\left[ {\overrightarrow {{u_\Delta }} ,\overrightarrow {{u_{\Delta '}}} } \right]\) = (5; −5; −5) và \(\overrightarrow {AB} \) = (−3; 1; 4) nên \(\left[ {\overrightarrow {{u_\Delta }} ,\overrightarrow {{u_{\Delta '}}} } \right].\overrightarrow {AB} \) = −40 ≠ 0.

Hai đường thẳng ∆ và ' chéo nhau.

b) Ta có: cos(∆, ') = \(\left| {\cos \left( {\overrightarrow {{u_\Delta }} ,\overrightarrow {{u_{\Delta '}}} } \right)} \right| = \frac{{\left| {\overrightarrow {{u_\Delta }} .\overrightarrow {{u_{\Delta '}}} } \right|}}{{\left| {\overrightarrow {{u_\Delta }} } \right|.\left| {\overrightarrow {{u_{\Delta '}}} } \right|}} = \frac{{\left| {3.1 + 2.\left( { - 1} \right) + 1.2} \right|}}{{\sqrt {{3^2} + {2^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {2^2}} }}\) = \(\frac{{\sqrt {21} }}{{14}}\).

c) Đường thẳng d song song với đường thẳng ∆ nên nhận \(\overrightarrow {{u_\Delta }} \) = (3; 2; 1) làm vectơ chỉ phương.

Phương trình đường thẳng d là: \(\frac{{x + 3}}{3} = \frac{{y - 2}}{2} = \frac{{z - 2}}{1}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP