Câu hỏi:

21/08/2024 493 Lưu

Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình của một mặt cầu? Xác định tâm và bán kính của mặt cầu đó.

a) x2 + y2 + z2 + 6x – 8z + 5 = 0.

b) x2 + y2 + z2 – 4x + 6z + 17 = 0.

c) 2x2 + 2y2 + 2z2 – 5 = 0.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Phương trình có các hệ số: a = −3, b = 0, c = 4 và d = 5.

a2 + b2 + c2 – d = (−3)2 + 02 +42 – 5 = 20 > 0.

Do đó, phương trình đã cho là phương trình mặt cầu có tâm I(−3; 0; 4) và bán kính

R = \(\sqrt {20} \).

b) Phương trình có các hệ số a = 2, b = 0, c = −3 và d =17.

a2 + b2 + c2 – d = 22 + 02 + (−3)2 – 17 = −4 < 0.

Do đó, phương trình đã cho không là phương trình mặt cầu.

c) Ta có: 2x2 + 2y2 + 2z2 – 5 = 0.

x2 + y2 + z2\(\frac{5}{2}\) = 0.

x2 + y2 + z2 = \(\frac{5}{2}\).

Do đó, phương trình đã cho là phương trình mặt cầu.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có I thuộc d nên I có dạng I(1 + t; 2t; −1 – 2t).

I cũng thuộc (P) nên thay I vào phương tình mặt phẳng (P), ta được:

2(1 + t) + 2t + (−1 – 2t) + 5 = 0

2t + 6 = 0

t = −3.

I(−2; −6; 5).

b) Ta có: \(\overrightarrow {{u_\Delta }} \) = (1; 2; −2), \(\overrightarrow {{n_P}} \) = (2; 1; 1).

\(\overrightarrow {{u_{\Delta '}}} = \left[ {\overrightarrow {{u_\Delta }} ,\overrightarrow {{n_P}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&{ - 2}\\1&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&1\\1&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\2&1\end{array}} \right|} \right)\) = (4; −5; −3) là vectơ chỉ phương của đường thẳng ∆'.

Đường thẳng ' qua I nên ta có phương trình đường thẳng như sau: \(\left\{ \begin{array}{l}x = - 2 + 4t\\y = - 6 - 5t\\z = 5 - 3t\end{array} \right.\).

c) Ta có: \(\overrightarrow {{u_\Delta }} \) = (1; 2; −2), \(\overrightarrow {{n_P}} \) = (2; 1; 1).

Do đó, sin(∆, (P)) = \(\left| {\cos \left( {{{\overrightarrow u }_\Delta },{{\overrightarrow n }_{\left( P \right)}}} \right)} \right| = \frac{{\left| {{{\overrightarrow u }_\Delta }.{{\overrightarrow n }_{\left( P \right)}}} \right|}}{{\left| {{{\overrightarrow u }_\Delta }} \right|.\left| {{{\overrightarrow n }_{\left( P \right)}}} \right|}} = \frac{{\left| {1.2 + 2.1 + \left( { - 2} \right).1} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{2^2} + {1^2} + {1^2}} }} = \frac{{\sqrt 6 }}{9}\).

(∆, (P)) ≈ 15,8°.

Lời giải

Mặt phẳng nằm ngang (Oxy) có một vectơ pháp tuyến là \(\overrightarrow k \) = (0; 0; 1).

Mặt phẳng (α) có vectơ pháp tuyến là (1; 1; 1).

Ta có: cos((Oxy), (α)) = \(\left| {\cos \left( {\overrightarrow k ,\overrightarrow n } \right)} \right| = \frac{{\left| {\overrightarrow k .\overrightarrow n } \right|}}{{\left| {\overrightarrow k } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| {0.1 + 0.1 + 1.1} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} .\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{{\sqrt 3 }}{3}\).

((Oxy), (α)) ≈ 54,7°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP