Câu hỏi:
21/08/2024 404
Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình của một mặt cầu? Xác định tâm và bán kính của mặt cầu đó.
a) x2 + y2 + z2 + 6x – 8z + 5 = 0.
b) x2 + y2 + z2 – 4x + 6z + 17 = 0.
c) 2x2 + 2y2 + 2z2 – 5 = 0.
Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình của một mặt cầu? Xác định tâm và bán kính của mặt cầu đó.
a) x2 + y2 + z2 + 6x – 8z + 5 = 0.
b) x2 + y2 + z2 – 4x + 6z + 17 = 0.
c) 2x2 + 2y2 + 2z2 – 5 = 0.
Quảng cáo
Trả lời:
a) Phương trình có các hệ số: a = −3, b = 0, c = 4 và d = 5.
⇒ a2 + b2 + c2 – d = (−3)2 + 02 +42 – 5 = 20 > 0.
Do đó, phương trình đã cho là phương trình mặt cầu có tâm I(−3; 0; 4) và bán kính
R = \(\sqrt {20} \).
b) Phương trình có các hệ số a = 2, b = 0, c = −3 và d =17.
⇒ a2 + b2 + c2 – d = 22 + 02 + (−3)2 – 17 = −4 < 0.
Do đó, phương trình đã cho không là phương trình mặt cầu.
c) Ta có: 2x2 + 2y2 + 2z2 – 5 = 0.
⇔ x2 + y2 + z2 – \(\frac{5}{2}\) = 0.
⇔ x2 + y2 + z2 = \(\frac{5}{2}\).
Do đó, phương trình đã cho là phương trình mặt cầu.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có I thuộc d nên I có dạng I(1 + t; 2t; −1 – 2t).
I cũng thuộc (P) nên thay I vào phương tình mặt phẳng (P), ta được:
2(1 + t) + 2t + (−1 – 2t) + 5 = 0
⇔ 2t + 6 = 0
⇔ t = −3.
⇒ I(−2; −6; 5).
b) Ta có: \(\overrightarrow {{u_\Delta }} \) = (1; 2; −2), \(\overrightarrow {{n_P}} \) = (2; 1; 1).
⇒ \(\overrightarrow {{u_{\Delta '}}} = \left[ {\overrightarrow {{u_\Delta }} ,\overrightarrow {{n_P}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&{ - 2}\\1&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&1\\1&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\2&1\end{array}} \right|} \right)\) = (4; −5; −3) là vectơ chỉ phương của đường thẳng ∆'.
Đường thẳng ∆' qua I nên ta có phương trình đường thẳng như sau: \(\left\{ \begin{array}{l}x = - 2 + 4t\\y = - 6 - 5t\\z = 5 - 3t\end{array} \right.\).
c) Ta có: \(\overrightarrow {{u_\Delta }} \) = (1; 2; −2), \(\overrightarrow {{n_P}} \) = (2; 1; 1).
Do đó, sin(∆, (P)) = \(\left| {\cos \left( {{{\overrightarrow u }_\Delta },{{\overrightarrow n }_{\left( P \right)}}} \right)} \right| = \frac{{\left| {{{\overrightarrow u }_\Delta }.{{\overrightarrow n }_{\left( P \right)}}} \right|}}{{\left| {{{\overrightarrow u }_\Delta }} \right|.\left| {{{\overrightarrow n }_{\left( P \right)}}} \right|}} = \frac{{\left| {1.2 + 2.1 + \left( { - 2} \right).1} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{2^2} + {1^2} + {1^2}} }} = \frac{{\sqrt 6 }}{9}\).
⇒ (∆, (P)) ≈ 15,8°.
Lời giải
a) Đường thẳng ∆ đi qua A(2; 1; −1) và nhận vectơ \(\overrightarrow {{u_\Delta }} \) = (3; 2; 1) làm vectơ chỉ phương.
Đường thẳng ∆' đi qua B(−1; 2; 3) và nhận vectơ \(\overrightarrow {{u_{\Delta '}}} \) = (1; −1; 2) làm vectơ chỉ phương.
Ta có: \(\left[ {\overrightarrow {{u_\Delta }} ,\overrightarrow {{u_{\Delta '}}} } \right]\) = (5; −5; −5) và \(\overrightarrow {AB} \) = (−3; 1; 4) nên \(\left[ {\overrightarrow {{u_\Delta }} ,\overrightarrow {{u_{\Delta '}}} } \right].\overrightarrow {AB} \) = −40 ≠ 0.
Hai đường thẳng ∆ và ∆' chéo nhau.
b) Ta có: cos(∆, ∆') = \(\left| {\cos \left( {\overrightarrow {{u_\Delta }} ,\overrightarrow {{u_{\Delta '}}} } \right)} \right| = \frac{{\left| {\overrightarrow {{u_\Delta }} .\overrightarrow {{u_{\Delta '}}} } \right|}}{{\left| {\overrightarrow {{u_\Delta }} } \right|.\left| {\overrightarrow {{u_{\Delta '}}} } \right|}} = \frac{{\left| {3.1 + 2.\left( { - 1} \right) + 1.2} \right|}}{{\sqrt {{3^2} + {2^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {2^2}} }}\) = \(\frac{{\sqrt {21} }}{{14}}\).
c) Đường thẳng d song song với đường thẳng ∆ nên nhận \(\overrightarrow {{u_\Delta }} \) = (3; 2; 1) làm vectơ chỉ phương.
Phương trình đường thẳng d là: \(\frac{{x + 3}}{3} = \frac{{y - 2}}{2} = \frac{{z - 2}}{1}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.