Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình của một mặt cầu? Xác định tâm và bán kính của mặt cầu đó.
a) x2 + y2 + z2 + 6x – 8z + 5 = 0.
b) x2 + y2 + z2 – 4x + 6z + 17 = 0.
c) 2x2 + 2y2 + 2z2 – 5 = 0.
Trong không gian Oxyz, phương trình nào trong các phương trình sau là phương trình của một mặt cầu? Xác định tâm và bán kính của mặt cầu đó.
a) x2 + y2 + z2 + 6x – 8z + 5 = 0.
b) x2 + y2 + z2 – 4x + 6z + 17 = 0.
c) 2x2 + 2y2 + 2z2 – 5 = 0.
Quảng cáo
Trả lời:
a) Phương trình có các hệ số: a = −3, b = 0, c = 4 và d = 5.
⇒ a2 + b2 + c2 – d = (−3)2 + 02 +42 – 5 = 20 > 0.
Do đó, phương trình đã cho là phương trình mặt cầu có tâm I(−3; 0; 4) và bán kính
R = \(\sqrt {20} \).
b) Phương trình có các hệ số a = 2, b = 0, c = −3 và d =17.
⇒ a2 + b2 + c2 – d = 22 + 02 + (−3)2 – 17 = −4 < 0.
Do đó, phương trình đã cho không là phương trình mặt cầu.
c) Ta có: 2x2 + 2y2 + 2z2 – 5 = 0.
⇔ x2 + y2 + z2 – \(\frac{5}{2}\) = 0.
⇔ x2 + y2 + z2 = \(\frac{5}{2}\).
Do đó, phương trình đã cho là phương trình mặt cầu.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có I thuộc d nên I có dạng I(1 + t; 2t; −1 – 2t).
I cũng thuộc (P) nên thay I vào phương tình mặt phẳng (P), ta được:
2(1 + t) + 2t + (−1 – 2t) + 5 = 0
⇔ 2t + 6 = 0
⇔ t = −3.
⇒ I(−2; −6; 5).
b) Ta có: \(\overrightarrow {{u_\Delta }} \) = (1; 2; −2), \(\overrightarrow {{n_P}} \) = (2; 1; 1).
⇒ \(\overrightarrow {{u_{\Delta '}}} = \left[ {\overrightarrow {{u_\Delta }} ,\overrightarrow {{n_P}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&{ - 2}\\1&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&1\\1&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\2&1\end{array}} \right|} \right)\) = (4; −5; −3) là vectơ chỉ phương của đường thẳng ∆'.
Đường thẳng ∆' qua I nên ta có phương trình đường thẳng như sau: \(\left\{ \begin{array}{l}x = - 2 + 4t\\y = - 6 - 5t\\z = 5 - 3t\end{array} \right.\).
c) Ta có: \(\overrightarrow {{u_\Delta }} \) = (1; 2; −2), \(\overrightarrow {{n_P}} \) = (2; 1; 1).
Do đó, sin(∆, (P)) = \(\left| {\cos \left( {{{\overrightarrow u }_\Delta },{{\overrightarrow n }_{\left( P \right)}}} \right)} \right| = \frac{{\left| {{{\overrightarrow u }_\Delta }.{{\overrightarrow n }_{\left( P \right)}}} \right|}}{{\left| {{{\overrightarrow u }_\Delta }} \right|.\left| {{{\overrightarrow n }_{\left( P \right)}}} \right|}} = \frac{{\left| {1.2 + 2.1 + \left( { - 2} \right).1} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{2^2} + {1^2} + {1^2}} }} = \frac{{\sqrt 6 }}{9}\).
⇒ (∆, (P)) ≈ 15,8°.
Lời giải
Mặt phẳng nằm ngang (Oxy) có một vectơ pháp tuyến là \(\overrightarrow k \) = (0; 0; 1).
Mặt phẳng (α) có vectơ pháp tuyến là (1; 1; 1).
Ta có: cos((Oxy), (α)) = \(\left| {\cos \left( {\overrightarrow k ,\overrightarrow n } \right)} \right| = \frac{{\left| {\overrightarrow k .\overrightarrow n } \right|}}{{\left| {\overrightarrow k } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| {0.1 + 0.1 + 1.1} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} .\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{{\sqrt 3 }}{3}\).
⇒ ((Oxy), (α)) ≈ 54,7°.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.