Câu hỏi:

21/08/2024 1,372

Trong không gian Oxyz, một vectơ pháp tuyến của mặt phẳng chứa đường thẳng

∆: \(\left\{ \begin{array}{l}x = 1 + t\\y = - 2 + 2t\\z = 3 - t\end{array} \right.\) và đi qua điểm A(2; −1; 1) là

A. \(\overrightarrow {{n_1}} \)= (3; −1; 1).

B. \(\overrightarrow {{n_2}} \) = (3; 1; −1).

C. \(\overrightarrow {{n_3}} \) = (1; −1; 3).

D. \(\overrightarrow {{n_4}} \) = (−1; 3; 1).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Vectơ chỉ phương của đường thẳng ∆ là: \(\overrightarrow u \) = (1; 2; −1).

Đường thẳng ∆ đi qua B(1; −2; 3) nên vectơ pháp tuyến của mặt phẳng chứa ∆ và đi qua A là: \(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow {AB} } \right]\) (với \(\overrightarrow {AB} \) = (−1; −1; 2)).

Suy ra \(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow {AB} } \right]\) = \(\left( {\left| {\begin{array}{*{20}{c}}2&{ - 1}\\{ - 1}&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&1\\2&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\{ - 1}&{ - 1}\end{array}} \right|} \right)\) = (3; −1; 1).

Vậy \(\overrightarrow n \) = (3; −1; 1).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có I thuộc d nên I có dạng I(1 + t; 2t; −1 – 2t).

I cũng thuộc (P) nên thay I vào phương tình mặt phẳng (P), ta được:

2(1 + t) + 2t + (−1 – 2t) + 5 = 0

2t + 6 = 0

t = −3.

I(−2; −6; 5).

b) Ta có: \(\overrightarrow {{u_\Delta }} \) = (1; 2; −2), \(\overrightarrow {{n_P}} \) = (2; 1; 1).

\(\overrightarrow {{u_{\Delta '}}} = \left[ {\overrightarrow {{u_\Delta }} ,\overrightarrow {{n_P}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&{ - 2}\\1&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&1\\1&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\2&1\end{array}} \right|} \right)\) = (4; −5; −3) là vectơ chỉ phương của đường thẳng ∆'.

Đường thẳng ' qua I nên ta có phương trình đường thẳng như sau: \(\left\{ \begin{array}{l}x = - 2 + 4t\\y = - 6 - 5t\\z = 5 - 3t\end{array} \right.\).

c) Ta có: \(\overrightarrow {{u_\Delta }} \) = (1; 2; −2), \(\overrightarrow {{n_P}} \) = (2; 1; 1).

Do đó, sin(∆, (P)) = \(\left| {\cos \left( {{{\overrightarrow u }_\Delta },{{\overrightarrow n }_{\left( P \right)}}} \right)} \right| = \frac{{\left| {{{\overrightarrow u }_\Delta }.{{\overrightarrow n }_{\left( P \right)}}} \right|}}{{\left| {{{\overrightarrow u }_\Delta }} \right|.\left| {{{\overrightarrow n }_{\left( P \right)}}} \right|}} = \frac{{\left| {1.2 + 2.1 + \left( { - 2} \right).1} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{2^2} + {1^2} + {1^2}} }} = \frac{{\sqrt 6 }}{9}\).

(∆, (P)) ≈ 15,8°.

Lời giải

a) Đường thẳng ∆ đi qua A(2; 1; −1) và nhận vectơ \(\overrightarrow {{u_\Delta }} \) = (3; 2; 1) làm vectơ chỉ phương.

Đường thẳng ∆' đi qua B(−1; 2; 3) và nhận vectơ \(\overrightarrow {{u_{\Delta '}}} \) = (1; −1; 2) làm vectơ chỉ phương.

Ta có: \(\left[ {\overrightarrow {{u_\Delta }} ,\overrightarrow {{u_{\Delta '}}} } \right]\) = (5; −5; −5) và \(\overrightarrow {AB} \) = (−3; 1; 4) nên \(\left[ {\overrightarrow {{u_\Delta }} ,\overrightarrow {{u_{\Delta '}}} } \right].\overrightarrow {AB} \) = −40 ≠ 0.

Hai đường thẳng ∆ và ' chéo nhau.

b) Ta có: cos(∆, ') = \(\left| {\cos \left( {\overrightarrow {{u_\Delta }} ,\overrightarrow {{u_{\Delta '}}} } \right)} \right| = \frac{{\left| {\overrightarrow {{u_\Delta }} .\overrightarrow {{u_{\Delta '}}} } \right|}}{{\left| {\overrightarrow {{u_\Delta }} } \right|.\left| {\overrightarrow {{u_{\Delta '}}} } \right|}} = \frac{{\left| {3.1 + 2.\left( { - 1} \right) + 1.2} \right|}}{{\sqrt {{3^2} + {2^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {2^2}} }}\) = \(\frac{{\sqrt {21} }}{{14}}\).

c) Đường thẳng d song song với đường thẳng ∆ nên nhận \(\overrightarrow {{u_\Delta }} \) = (3; 2; 1) làm vectơ chỉ phương.

Phương trình đường thẳng d là: \(\frac{{x + 3}}{3} = \frac{{y - 2}}{2} = \frac{{z - 2}}{1}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay