Tìm họ tất cả các nguyên hàm của các hàm số sau:
a) \(y = {\sin ^2}\frac{x}{2}\);
b) y = e2x – 2x5 + 5.
Tìm họ tất cả các nguyên hàm của các hàm số sau:
a) \(y = {\sin ^2}\frac{x}{2}\);
b) y = e2x – 2x5 + 5.
Câu hỏi trong đề: Giải SBT Toán 12 Tập 2 KNTT Bài tập cuối chương IV có đáp án !!
Quảng cáo
Trả lời:
a) \(y = {\sin ^2}\frac{x}{2}\) = \(\frac{{1 - \cos x}}{2}\).
Ta có: \(\int {{{\sin }^2}\frac{x}{2}dx = \int {\frac{{1 - \cos x}}{2}dx = \frac{1}{2}x - \frac{1}{2}\sin x + C} } \).
b) Ta có: \(\int {\left( {{e^{2x}} - 2{x^5} + 5} \right)dx} \) = \(\int {{e^{2x}}dx - \int {2{x^5}dx + \int {5dx} } } \)
= \(\frac{1}{2}{e^{2x}} - \frac{1}{3}{x^6} + 5x + C\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Quãng đường ô tô đồ chơi đi đến khi dừng lại là:
S(t) = \(\int\limits_0^5 {v\left( t \right)dt = \int\limits_0^5 {\left( {\frac{1}{2}{t^2} - 0,1{t^3}} \right)dt} } = \left. {\left( {\frac{{{t^3}}}{6} - \frac{{0,1{t^4}}}{4}} \right)} \right|_0^5 = \frac{{{5^3}}}{6} - \frac{{0,{{1.5}^4}}}{4}\) ≈ 5,21 (m).
Lời giải
Đáp án đúng là: B
Ta có công thức: S = \(\int\limits_a^b {\left| {f\left( x \right)} \right|dx} = - \int\limits_a^b {f\left( x \right)dx} \) (do f(x) ≤ 0, ∀x ∈ [a; b]).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.