Câu hỏi:
22/08/2024 113Cho hình phẳng D giới hạn bởi đồ thị hàm số y = \(\sqrt {{x^2} + 1} \), trục hoành và hai đường thẳng x = 0, x = 1. Tính thể tích khối tròn xoay tạo thành khi quay D quanh trục hoành.
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Thể tích khối tròn xoay giới hạn bởi đồ thị hàm số y = \(\sqrt {{x^2} + 1} \), trục hoành và hai đường thẳng x = 0, x = 1 là:
V = \(\pi \int\limits_0^1 {{{\left( {\sqrt {{x^2} + 1} } \right)}^2}dx} \) = \(\left. {\pi \left( {\frac{1}{3}{x^3} + x} \right)} \right|_0^1\) = \(\frac{4}{3}\pi \).
Vậy thể tích khối tròn xoay là V = \(\frac{4}{3}\pi \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Khi nghiên cứu một quần thể vi khuẩn, người ta nhận thấy quần thể vi khuẩn đó ở ngày thứ t có số lượng N(t) con. Biết rằng tốc độ phát triển của quần thể đó là N'(t) = \(\frac{{8000}}{t}\) và sau ngày thứ nhất (t = 1) có 250 000 con. Sau 6 ngày (t = 6), số lượng của quần thể vi khuẩn là
A. 353 584 con.
B. 234 167 con.
C. 288 959 con.
D. 264 334 con.
Câu 2:
Một ô tô đồ chơi trượt xuống dốc và dừng sau 5 giây, vận tốc của ô tô đồ chơi từ thời điểm t = 0 giây đến t = 5 giây được cho bởi công thức v(t) = \(\frac{1}{2}\)t2 – 0,1t3 (m/s).
Tính quãng đường ô tô đồ chơi đi đến khi dừng lại (làm tròn kết quả theo đơn vị mét đến số thập phân thứ hai).
Câu 3:
Có bao nhiêu giá trị nguyên dương của tham số m để \(\int\limits_0^3 {\left( {10x - 2m} \right)dx} > 0\)?
Câu 4:
Khi nghiên cứu dịch sốt xuất huyết ở một địa phương, các chuyên gia y tế ước tính rằng tại ngày thứ m có F(m) người mắc bệnh (sau khi đã làm tròn đến chữ số hàng đơn vị). Biết rằng tốc độ lan truyền bệnh là F'(m) = \(\frac{{150}}{{2m + 1}}\) và ngày đầu tiên (m = 0) người ta phát hiện ra 50 bệnh nhân. Hãy xác định biểu thức của F(m) và số người mắc bệnh ở ngày thứ 10.
Câu 5:
\(\int {{x^2}} dx\)bằng:
A. 2x + C.
B. \(\frac{1}{3}\)x3 + C.
C. x3 + C.
D. 3x3 + C.
Câu 6:
Giá trị trung bình của hàm f(x) trên đoạn [a; b] được tính bởi công thức m = \(\frac{1}{{b - a}}\int\limits_a^b {f\left( x \right)dx} \). Khi đó, giá trị trung bình của hàm số f(x) = x2 + 2x trên đoạn [0; 3] là
A. \(\frac{8}{3}\).
B. 18.
C. 6.
D. 5.
Câu 7:
Cho hàm số y = f(x) liên tục trên [a; b] và
f(x) ≤ 0, ∀x ∈ [a; b]. Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng x = a, x = b được tính bằng công thức
A. S = \(\int\limits_a^b {f\left( x \right)dx} \).
B. S = \( - \int\limits_a^b {f\left( x \right)dx} \).
C. S = \(\pi \int\limits_a^b {f\left( x \right)dx} \).
D. S = \(\pi \int\limits_a^b {{{\left[ {f\left( x \right)} \right]}^2}dx} \).
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
về câu hỏi!