Câu hỏi:

22/08/2024 523

a) Khảo sát sự biến thiên và vẽ đồ thị (H) của hàm số y = \(\frac{{2x - 1}}{{x - 1}}\). Tìm tọa độ tâm đối xứng I của đồ thị.

b) Tìm điều kiện của tham số m để đường thẳng d: y = −x + m cắt đồ thị (H) tại hai điểm phân biệt.

c) Chứng minh rằng tiếp tuyến của đồ thị (H) tại mọi điểm M thuộc (H) luôn cắt hai tiệm của (H) tại hai điểm A và B thuộc hai nhánh của đồ thị và đoạn AB ngắn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Tập xác định: D = ℝ\{1}.

Chiều biến thiên: y' = \(\frac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}}\) < 0, x ≠ 1.

Vậy hàm số nghịch biến trên mỗi khoảng xác định (−∞; 1) và (1; +∞).

Hàm số không có cực trị.

Giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to - \infty } y = 2\); \(\mathop {\lim }\limits_{x \to + \infty } y = 2\). Vậy đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số.

Giới hạn vô cực: \(\mathop {\lim }\limits_{x \to {1^ - }} y = - \infty \); \(\mathop {\lim }\limits_{x \to {1^ + }} y = + \infty \). Vậy đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.

Ta có bảng biến thiên:

a) Khảo sát sự biến thiên và vẽ đồ thị (H) của hàm số y = (2x-1)/(x-1) Tìm tọa độ tâm đối xứng I của đồ thị. b) Tìm điều kiện của tham số m để đường thẳng d: y = −x + m cắt đồ thị (H) tại hai điểm phân biệt. c) Chứng minh rằng tiếp tuyến của đồ thị (H) tại mọi điểm M thuộc (H) luôn cắt hai tiệm của (H) tại hai điểm A và B thuộc hai nhánh của đồ thị và đoạn AB ngắn nhất. (ảnh 1)

Đồ thị hàm số nhận giao điểm I(1; 2) của hai đường tiệm cận làm tâm đối xứng.

a) Khảo sát sự biến thiên và vẽ đồ thị (H) của hàm số y = (2x-1)/(x-1) Tìm tọa độ tâm đối xứng I của đồ thị. b) Tìm điều kiện của tham số m để đường thẳng d: y = −x + m cắt đồ thị (H) tại hai điểm phân biệt. c) Chứng minh rằng tiếp tuyến của đồ thị (H) tại mọi điểm M thuộc (H) luôn cắt hai tiệm của (H) tại hai điểm A và B thuộc hai nhánh của đồ thị và đoạn AB ngắn nhất. (ảnh 2)

b) Đường thẳng thẳng d: y = −x + m cắt đồ thị (H): y = \(\frac{{2x - 1}}{{x - 1}}\) tại hai điểm phân biệt khi và chỉ khi phương trình \(\frac{{2x - 1}}{{x - 1}}\) = −x + m có hai nghiệm phân biệt khác 1.

Ta có: \(\frac{{2x - 1}}{{x - 1}}\) = −x + m

2x − 1 = (x – 1)(−x + m).

x2 + (1 – m)x + m – 1 = 0 (x ≠ 1)

\(\left\{ \begin{array}{l}\Delta = {\left( {1 - m} \right)^2} - 4\left( {m - 1} \right) > 0\\1 + 1 - m + m - 1 \ne 0\end{array} \right.\) m2 – 6m + 5 > 0 m (−∞; 1) (5; +∞).

c)

a) Khảo sát sự biến thiên và vẽ đồ thị (H) của hàm số y = (2x-1)/(x-1) Tìm tọa độ tâm đối xứng I của đồ thị. b) Tìm điều kiện của tham số m để đường thẳng d: y = −x + m cắt đồ thị (H) tại hai điểm phân biệt. c) Chứng minh rằng tiếp tuyến của đồ thị (H) tại mọi điểm M thuộc (H) luôn cắt hai tiệm của (H) tại hai điểm A và B thuộc hai nhánh của đồ thị và đoạn AB ngắn nhất. (ảnh 3)

 

Lấy điểm M\(\left( {t;\frac{{2t - 1}}{{t - 1}}} \right)\) bất kì thuộc đồ thị (H) với t ≠ 1. Phương trình tiếp tuyến của đồ thị (H) tại tiếp điểm M là

∆: y = y'(t)(x – t) + y(t) hay y = \(\frac{{ - 1}}{{{{\left( {t - 1} \right)}^2}}}\left( {x - t} \right) + \frac{{2t - 1}}{{t - 1}}\).

Đường thẳng ∆ cắt tiệm cận đứng tại A\(\left( {1;\frac{{2t}}{{t - 1}}} \right)\). Ta có: IA = \(\frac{2}{{\left| {t - 1} \right|}}\).

Đường thẳng ∆ cắt tiệm cận ngang tại điểm B(2t – 1; 2). Ta có IB = 2\(\left| {t - 1} \right|\).

Vậy diện tích tam giác IAB là \({S_{\Delta IAB}} = \frac{1}{2}IA.IB = \frac{1}{2}.\frac{2}{{\left| {t - 1} \right|}}.2\left| {t - 1} \right| = 2\) (đvdt).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi A là biến cố: “Cặp sinh đôi là song sinh cùng trứng”

           B là biến cố: “Cặp sinh đôi có cùng giới tính”.

Theo đề bài, ta có: P(B | A) = 1, P(B | \(\overline A \)) = \(\frac{1}{2}\) và P(B) = 0,34 + 0,3 = 0,64.

Theo công thức xác suất toàn phần, ta có:

P(B) = P(A).P(B | A) + P(\(\overline A \)).P(B | \(\overline A \))

0,64 = P(A).1 + (1 – P(A)).\(\frac{1}{2}\)

0,64 = P(A) – \(\frac{1}{2}\)P(A) + \(\frac{1}{2}\)

0,14 = \(\frac{1}{2}\)P(A)

P(A) = 0,28.

Vậy xác suất để cặp sinh đôi được chọn là cặp song sinh cùng trứng bằng 0,28.

b) Xác suất để chọn được cặp sinh đôi cùng trứng biết rằng cặp sinh đôi đó cùng giới tính là P(A | B).

Theo công thức nhân xác suất, ta có: P(AB) = P(A).P(B | A).

Ta có, P(A) = 0,28. Theo giả thiết P(B | A) = 1.

Do đó, P(AB) = P(A).P(B | A) = 0,28.

Lại có P(B) = 0,34 + 0,3 = 0,64.

Như vậy, P(A | B) = \(\frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,28}}{{0,64}} = 0,4375\).

Lời giải

Đáp án đúng là: B

Kí hiệu G là con gái, T là con trai.

Gọi A là biến cố: “Cả hai là con gái”.

       B là biến cố: “Người con đầu là con gái”.

Lúc này, P(A | B) là xác suất để chọn được gia đình có hai con gái trong đó người con đầu là con gái.

Ta có: B ={GT; GG} n(B) = 2;

         AB = {GG} n(AB) = 1.

Vậy P(B) = \(\frac{1}{2}\), P(AB) = \(\frac{1}{4}\) P(A | B) = \(\frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\) = \(\frac{1}{2}\).

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay