Câu hỏi:
22/08/2024 459a) Khảo sát sự biến thiên và vẽ đồ thị (H) của hàm số y = \(\frac{{2x - 1}}{{x - 1}}\). Tìm tọa độ tâm đối xứng I của đồ thị.
b) Tìm điều kiện của tham số m để đường thẳng d: y = −x + m cắt đồ thị (H) tại hai điểm phân biệt.
c) Chứng minh rằng tiếp tuyến của đồ thị (H) tại mọi điểm M thuộc (H) luôn cắt hai tiệm của (H) tại hai điểm A và B thuộc hai nhánh của đồ thị và đoạn AB ngắn nhất.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
a) Tập xác định: D = ℝ\{1}.
Chiều biến thiên: y' = \(\frac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}}\) < 0, ∀x ≠ 1.
Vậy hàm số nghịch biến trên mỗi khoảng xác định (−∞; 1) và (1; +∞).
Hàm số không có cực trị.
Giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to - \infty } y = 2\); \(\mathop {\lim }\limits_{x \to + \infty } y = 2\). Vậy đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số.
Giới hạn vô cực: \(\mathop {\lim }\limits_{x \to {1^ - }} y = - \infty \); \(\mathop {\lim }\limits_{x \to {1^ + }} y = + \infty \). Vậy đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.
Ta có bảng biến thiên:
Đồ thị hàm số nhận giao điểm I(1; 2) của hai đường tiệm cận làm tâm đối xứng.
b) Đường thẳng thẳng d: y = −x + m cắt đồ thị (H): y = \(\frac{{2x - 1}}{{x - 1}}\) tại hai điểm phân biệt khi và chỉ khi phương trình \(\frac{{2x - 1}}{{x - 1}}\) = −x + m có hai nghiệm phân biệt khác 1.
Ta có: \(\frac{{2x - 1}}{{x - 1}}\) = −x + m
⇔ 2x − 1 = (x – 1)(−x + m).
⇔ x2 + (1 – m)x + m – 1 = 0 (x ≠ 1)
⇔ \(\left\{ \begin{array}{l}\Delta = {\left( {1 - m} \right)^2} - 4\left( {m - 1} \right) > 0\\1 + 1 - m + m - 1 \ne 0\end{array} \right.\) ⇔ m2 – 6m + 5 > 0 ⇔ m ∈ (−∞; 1) ∪ (5; +∞).
c)
Lấy điểm M\(\left( {t;\frac{{2t - 1}}{{t - 1}}} \right)\) bất kì thuộc đồ thị (H) với t ≠ 1. Phương trình tiếp tuyến của đồ thị (H) tại tiếp điểm M là
∆: y = y'(t)(x – t) + y(t) hay y = \(\frac{{ - 1}}{{{{\left( {t - 1} \right)}^2}}}\left( {x - t} \right) + \frac{{2t - 1}}{{t - 1}}\).
Đường thẳng ∆ cắt tiệm cận đứng tại A\(\left( {1;\frac{{2t}}{{t - 1}}} \right)\). Ta có: IA = \(\frac{2}{{\left| {t - 1} \right|}}\).
Đường thẳng ∆ cắt tiệm cận ngang tại điểm B(2t – 1; 2). Ta có IB = 2\(\left| {t - 1} \right|\).
Vậy diện tích tam giác IAB là \({S_{\Delta IAB}} = \frac{1}{2}IA.IB = \frac{1}{2}.\frac{2}{{\left| {t - 1} \right|}}.2\left| {t - 1} \right| = 2\) (đvdt).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = \(\frac{{{x^2} - 2x + 1}}{{x + 1}}\) có đồ thị (C). Khẳng định nào sau đây là sai?
A. Đường thẳng x = −1 là tiệm cận đứng của đồ thị (C).
B. Đường thẳng y = 1 là tiệm cận ngang của đồ thị (C).
C. Đường thẳng y = x – 3 là tiệm cận xiên của đồ thị (C).
D. Hàm số có hai cực trị.
Câu 2:
Một cặp trẻ sinh đôi có thể do cùng một trứng sinh ra (gọi đó là cặp song sinh cùng trứng) hay do hai trứng khác nhau sinh ra (gọi là cặp song sinh khác trứng). Cặp song sinh cùng trứng luôn có cùng giới tính. Cặp song sinh khác trứng có xác suất \(\frac{1}{2}\) là cùng giới tính. Thống kê cho thấy 34% cặp song sinh cùng là trai và 30% cặp song sinh cùng là gái.
a) Chọn ngẫu nhiên một cặp trẻ sinh đôi. Tính xác suất để cặp trẻ sinh đôi được chọn là cặp song sinh cùng trứng.
b) Chọn ngẫu nhiên một cặp sinh đôi ta được một cặp sinh đôi có cùng giới tính. Tính xác suất để cặp sinh đôi này cặp song sinh cùng trứng.
Câu 3:
Chọn ngẫu nhiên gia đình có 2 con. Biết rằng người con đầu là con gái. Xác suất để gia đình đó có hai con gái là
A. 0,6.
B. 0,5.
C. 0,55.
D. 0,65.
Câu 4:
Cho tứ diện đều ABCD có cạnh bằng a. Tính \(\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right).\overrightarrow {BC} \).
Câu 5:
Trong không gian Oxyz, cho đường thẳng
∆: \(\frac{{x - 2}}{1} = \frac{{y + 2}}{2} = \frac{{z - 3}}{2}\) và mặt phẳng (P): 2x + y – z – 3 = 0.
a) Tính góc giữa đường thẳng ∆ và mặt phẳng (P).
b) Viết phương trình mặt phẳng (Q) chứa ∆ và mặt phẳng (Q) vuông góc với mặt phẳng (P).
Câu 6:
Gieo ba con xúc xắc cân đối và đồng chất. Xét các biến cố sau:
A: “Số chấm trên mặt xuất hiện của ba con xúc xắc khác nhau”;
B: “Có ít nhất một con xúc xắc xuất hiện mặt 6 chấm”.
Tính P(A | B) và P(B | A).
Câu 7:
Chọn ngẫu nhiên một lá bài từ cỗ bài tú lơ khơ gồm 52 lá bài. Xác suất để lá bài lấy ra có chất rô, nếu biết rằng lá bài đó mang số chẵn là
A. \(\frac{1}{4}\).
B. \(\frac{3}{8}\).
C. \(\frac{1}{3}\).
D. \(\frac{5}{{13}}\).
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận