Câu hỏi:

22/08/2024 131

Trong không gian Oxyz, cho hai điểm A(1; 2; 0) và B(3; 2; 2).

a) Viết phương trình tham số của đường thẳng AB.

b) Viết phương trình mặt cầu đường kính AB.

c) Viết phương trình mặt phẳng (OAB).

d) Tìm tọa độ của điểm M trên mặt mặt phẳng tọa độ (Oyz) sao cho MA2 + MB2 nhỏ nhất.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ta có: \(\overrightarrow {AB} \) = (2; 0; 2) là một vectơ chỉ phương của đường thẳng AB.

Phương trình tham số của đường thẳng AB là: \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2\\z = 2t\end{array} \right.\).

b) Mặt cầu đường kính AB có tâm I là trung điểm của AB, ta có tọa độ I là:

\(\left\{ \begin{array}{l}{x_I} = \frac{{1 + 3}}{2} = 2\\{y_I} = \frac{{2 + 2}}{2} = 2\\{z_I} = \frac{{0 + 2}}{2} = 1\end{array} \right.\) I(2; 2; 1).

Bán kính mặt cầu là: IA = \(\sqrt {{{\left( {1 - 2} \right)}^2} + {{\left( {2 - 2} \right)}^2} + {{\left( {0 - 1} \right)}^2}} = \sqrt 2 \).

Phương trình mặt cầu đường kính BA là: (x – 2)2 + (y – 2)2 + (x – 1)2 = 2.

c) Ta có: \(\overrightarrow {OA} \) = (1; 2; 0), \(\overrightarrow {OB} \) = (3; 2; 2).

\(\overrightarrow n = \left[ {\overrightarrow {OA} ,\overrightarrow {OB} } \right] = \left( {\left| {\begin{array}{*{20}{c}}2&0\\2&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&1\\2&3\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\3&2\end{array}} \right|} \right)\) = (4; −2; −4) = 2(2; −1; −2) là một vectơ pháp tuyến của mặt phẳng (OAB) nên phương trình mặt phẳng (OAB) là:

2(x – 0) – 1(y – 0) – 2(z – 0) = 0 2x – y – 2z = 0.

d) Gọi I là trung điểm của AB thì I = (2; 2; 1), ta có:

MA2 + MB2 = \({\left( {\overrightarrow {MI} + \overrightarrow {IA} } \right)^2} + {\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right)^2}\) = 2MI2 + IA2 + IB2,

Do đó MA2 + MB2 nhỏ nhất khi MI nhỏ nhất hay M là hình chiếu vuông góc của điểm I trên mặt phẳng (Oxy), suy ra M(2; 2; 0).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y = \(\frac{{{x^2} - 2x + 1}}{{x + 1}}\) có đồ thị (C). Khẳng định nào sau đây là sai?

A. Đường thẳng x = −1 là tiệm cận đứng của đồ thị (C).

B. Đường thẳng y = 1 là tiệm cận ngang của đồ thị (C).

C. Đường thẳng y = x – 3 là tiệm cận xiên của đồ thị (C).

D. Hàm số có hai cực trị.

Xem đáp án » 22/08/2024 3,763

Câu 2:

Cho tứ diện đều ABCD có cạnh bằng a. Tính \(\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right).\overrightarrow {BC} \).

Xem đáp án » 22/08/2024 1,094

Câu 3:

Một cặp trẻ sinh đôi có thể do cùng một trứng sinh ra (gọi đó là cặp song sinh cùng trứng) hay do hai trứng khác nhau sinh ra (gọi là cặp song sinh khác trứng). Cặp song sinh cùng trứng luôn có cùng giới tính. Cặp song sinh khác trứng có xác suất \(\frac{1}{2}\) là cùng giới tính. Thống kê cho thấy 34% cặp song sinh cùng là trai và 30% cặp song sinh cùng là gái.

a) Chọn ngẫu nhiên một cặp trẻ sinh đôi. Tính xác suất để cặp trẻ sinh đôi được chọn là cặp song sinh cùng trứng.

b) Chọn ngẫu nhiên một cặp sinh đôi ta được một cặp sinh đôi có cùng giới tính. Tính xác suất để cặp sinh đôi này cặp song sinh cùng trứng.

Xem đáp án » 22/08/2024 1,021

Câu 4:

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số y = \( - \frac{{{x^2} + x + 1}}{x}\).

b) Tìm các giá trị của tham số m để đường thẳng d: y = −2x + m cắt đồ thị (C) tại hai điểm A và B thuộc hai nhánh của đồ thị và đoạn AB ngắn nhất.

Xem đáp án » 22/08/2024 799

Câu 5:

Đồ thị trong hình vẽ dưới đây là của hàm số nào?

Đồ thị trong hình vẽ dưới đây là của hàm số nào?   A. y = (x^2 - 2x)/(x + 1)  (ảnh 1)

A. \(y = \frac{{{x^2} - 2x}}{{x + 1}}.\)

B. \(y = \frac{{{x^2} + 2x}}{{x + 1}}.\)

C. \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}.\)

D. \(y = \frac{{2x}}{{x + 1}}.\)

Xem đáp án » 22/08/2024 713

Câu 6:

a) Lập bảng biến thiên của hàm số y = \(\frac{{{x^2}}}{{x + 1}}\).

b) Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M = \(\frac{{{{\cos }^2}\alpha }}{{\cos \alpha + 1}}\).

Xem đáp án » 22/08/2024 637

Câu 7:

a) Khảo sát sự biến thiên và vẽ đồ thị hàm số y = −x3 + 3x2 – 2.

b) Tìm điều kiện của tham số m để phương trình x3 – 3x2 + 5 – m = 0 có ba nghiệm phân biệt.

c) Tìm điểm thuộc đồ thị hàm số mà tiếp tuyến với đồ thị tại điểm có hệ số góc lớn nhất.

Xem đáp án » 22/08/2024 475

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store