Câu hỏi:

22/08/2024 1,006

Thống kê cho thấy tỉ lệ người mắc bệnh X trong dân cư là 20%. Bệnh X có liên quan tới triệu chứng S.

a) Theo bác sĩ M nếu một người mắc bệnh X thì khả năng người đó có triệu chứng S là 90% và nếu người đó không mắc bệnh X thì chỉ có 15% khả năng người đó có triệu chứng S mà thôi. Vậy theo bác sĩ M, nếu một người có triệu chứng S thì xác suất để người đó mắc bệnh X là bao nhiêu?

b) Theo bác sĩ N nếu một người mắc bệnh X thì 95% khả năng người đó có triệu chứng S và nếu người đó không mắc bệnh X thì chỉ có 10% khả năng người đó có triệu chứng S mà thôi. Vậy theo bác sĩ N, nếu một người có triệu chứng S thì xác suất để người đó mắc bệnh X là bao nhiêu?

c) Theo bác sĩ P nếu một người mắc bệnh X thì 99% khả năng người đó có triệu chứng S. Còn nếu người đó không mắc bệnh X thì chỉ có 1% khả năng người đó có triệu chứng S mà thôi. Vậy theo bác sĩ P, nếu một người có triệu chứng S thì xác suất để người đó mắc bệnh X là bao nhiêu?

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi A là biến cố: “Người đó mắc bệnh X”,

       B là biến cố: “Người đó có triệu chứng S”.

Ta có: P(A) = 0,2.

Xác suất để một người có triệu chứng S mắc bệnh X là P(A | B).

a) Theo đánh giá của bác sĩ M, nếu một người mắc bệnh X thì 90% khả năng người đó có triệu chứng S, tức là P(B | A) = 0,9; nếu người đo không mắc bệnh X thì xác suất người đó có triệu chứng S là 15% hay P(B | \(\overline A \)) = 0,15.

Theo công thức Bayes, ta được:

P(A | B) = \(\frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}\) = \(\frac{{0,2.0,9}}{{0,2.0,9 + \left( {1 - 0,2} \right).0,15}}\) = 0,6.

Vậy bác sĩ M kết luận: Nếu một người có triệu chứng S thì người đó mắc bệnh X với xác suất 0,6.

b) Theo bác sĩ N thì nếu một người mắc bệnh X thì 95% khả năng người đó có triệu chứng S, tức là P(B | A) = 0,95; nếu người đo không mắc bệnh X thì xác suất người đó có triệu chứng S là 10% hay P(B | \(\overline A \)) = 0,1.

Theo công thức Bayes, ta được:

P(A | B) = \(\frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}\) = \(\frac{{0,2.0,95}}{{0,2.0,95 + \left( {1 - 0,2} \right).0,1}}\) ≈ 0,74.

Vậy bác sĩ N kết luận: Nếu một người có triệu chứng S thì người đó mắc bệnh X với xác suất khoảng 0,74.

c) Theo bác sĩ P thì nếu một người mắc bệnh X thì 99% khả năng người đó có triệu chứng S, tức là P(B | A) = 0,99; nếu người đo không mắc bệnh X thì xác suất người đó có triệu chứng S là 1% hay P(B | \(\overline A \)) = 0,01.

Theo công thức Bayes, ta được:

P(A | B) = \(\frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}\) = \(\frac{{0,2.0,99}}{{0,2.0,90 + \left( {1 - 0,2} \right).0,01}}\) ≈ 0,961.

Vậy bác sĩ P kết luận: Nếu một người có triệu chứng S thì người đó mắc bệnh X với xác suất khoảng 0,961.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một cặp trẻ sinh đôi có thể do cùng một trứng sinh ra (gọi đó là cặp song sinh cùng trứng) hay do hai trứng khác nhau sinh ra (gọi là cặp song sinh khác trứng). Cặp song sinh cùng trứng luôn có cùng giới tính. Cặp song sinh khác trứng có xác suất \(\frac{1}{2}\) là cùng giới tính. Thống kê cho thấy 34% cặp song sinh cùng là trai và 30% cặp song sinh cùng là gái.

a) Chọn ngẫu nhiên một cặp trẻ sinh đôi. Tính xác suất để cặp trẻ sinh đôi được chọn là cặp song sinh cùng trứng.

b) Chọn ngẫu nhiên một cặp sinh đôi ta được một cặp sinh đôi có cùng giới tính. Tính xác suất để cặp sinh đôi này cặp song sinh cùng trứng.

Xem đáp án » 22/08/2024 6,004

Câu 2:

Cho hàm số y = \(\frac{{{x^2} - 2x + 1}}{{x + 1}}\) có đồ thị (C). Khẳng định nào sau đây là sai?

A. Đường thẳng x = −1 là tiệm cận đứng của đồ thị (C).

B. Đường thẳng y = 1 là tiệm cận ngang của đồ thị (C).

C. Đường thẳng y = x – 3 là tiệm cận xiên của đồ thị (C).

D. Hàm số có hai cực trị.

Xem đáp án » 22/08/2024 5,925

Câu 3:

Chọn ngẫu nhiên gia đình có 2 con. Biết rằng người con đầu là con gái. Xác suất để gia đình đó có hai con gái là

A. 0,6.

B. 0,5.

C. 0,55.

D. 0,65.

Xem đáp án » 22/08/2024 5,595

Câu 4:

Trong không gian Oxyz, cho đường thẳng

∆: \(\frac{{x - 2}}{1} = \frac{{y + 2}}{2} = \frac{{z - 3}}{2}\) và mặt phẳng (P): 2x + y – z – 3 = 0.

a) Tính góc giữa đường thẳng ∆ và mặt phẳng (P).

b) Viết phương trình mặt phẳng (Q) chứa ∆ và mặt phẳng (Q) vuông góc với mặt phẳng (P).

Xem đáp án » 22/08/2024 2,576

Câu 5:

Gieo ba con xúc xắc cân đối và đồng chất. Xét các biến cố sau:

A: “Số chấm trên mặt xuất hiện của ba con xúc xắc khác nhau”;

B: “Có ít nhất một con xúc xắc xuất hiện mặt 6 chấm”.

Tính P(A | B) và P(B | A).

Xem đáp án » 22/08/2024 2,550

Câu 6:

Cho tứ diện đều ABCD có cạnh bằng a. Tính \(\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right).\overrightarrow {BC} \).

Xem đáp án » 22/08/2024 2,542

Câu 7:

Chọn ngẫu nhiên một lá bài từ cỗ bài tú lơ khơ gồm 52 lá bài. Xác suất để lá bài lấy ra có chất rô, nếu biết rằng lá bài đó mang số chẵn là

A. \(\frac{1}{4}\).

B. \(\frac{3}{8}\).

C. \(\frac{1}{3}\).

D. \(\frac{5}{{13}}\).

Xem đáp án » 22/08/2024 2,231