Câu hỏi:

22/08/2024 429

Thống kê cho thấy tỉ lệ người mắc bệnh X trong dân cư là 20%. Bệnh X có liên quan tới triệu chứng S.

a) Theo bác sĩ M nếu một người mắc bệnh X thì khả năng người đó có triệu chứng S là 90% và nếu người đó không mắc bệnh X thì chỉ có 15% khả năng người đó có triệu chứng S mà thôi. Vậy theo bác sĩ M, nếu một người có triệu chứng S thì xác suất để người đó mắc bệnh X là bao nhiêu?

b) Theo bác sĩ N nếu một người mắc bệnh X thì 95% khả năng người đó có triệu chứng S và nếu người đó không mắc bệnh X thì chỉ có 10% khả năng người đó có triệu chứng S mà thôi. Vậy theo bác sĩ N, nếu một người có triệu chứng S thì xác suất để người đó mắc bệnh X là bao nhiêu?

c) Theo bác sĩ P nếu một người mắc bệnh X thì 99% khả năng người đó có triệu chứng S. Còn nếu người đó không mắc bệnh X thì chỉ có 1% khả năng người đó có triệu chứng S mà thôi. Vậy theo bác sĩ P, nếu một người có triệu chứng S thì xác suất để người đó mắc bệnh X là bao nhiêu?

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi A là biến cố: “Người đó mắc bệnh X”,

       B là biến cố: “Người đó có triệu chứng S”.

Ta có: P(A) = 0,2.

Xác suất để một người có triệu chứng S mắc bệnh X là P(A | B).

a) Theo đánh giá của bác sĩ M, nếu một người mắc bệnh X thì 90% khả năng người đó có triệu chứng S, tức là P(B | A) = 0,9; nếu người đo không mắc bệnh X thì xác suất người đó có triệu chứng S là 15% hay P(B | \(\overline A \)) = 0,15.

Theo công thức Bayes, ta được:

P(A | B) = \(\frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}\) = \(\frac{{0,2.0,9}}{{0,2.0,9 + \left( {1 - 0,2} \right).0,15}}\) = 0,6.

Vậy bác sĩ M kết luận: Nếu một người có triệu chứng S thì người đó mắc bệnh X với xác suất 0,6.

b) Theo bác sĩ N thì nếu một người mắc bệnh X thì 95% khả năng người đó có triệu chứng S, tức là P(B | A) = 0,95; nếu người đo không mắc bệnh X thì xác suất người đó có triệu chứng S là 10% hay P(B | \(\overline A \)) = 0,1.

Theo công thức Bayes, ta được:

P(A | B) = \(\frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}\) = \(\frac{{0,2.0,95}}{{0,2.0,95 + \left( {1 - 0,2} \right).0,1}}\) ≈ 0,74.

Vậy bác sĩ N kết luận: Nếu một người có triệu chứng S thì người đó mắc bệnh X với xác suất khoảng 0,74.

c) Theo bác sĩ P thì nếu một người mắc bệnh X thì 99% khả năng người đó có triệu chứng S, tức là P(B | A) = 0,99; nếu người đo không mắc bệnh X thì xác suất người đó có triệu chứng S là 1% hay P(B | \(\overline A \)) = 0,01.

Theo công thức Bayes, ta được:

P(A | B) = \(\frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}\) = \(\frac{{0,2.0,99}}{{0,2.0,90 + \left( {1 - 0,2} \right).0,01}}\) ≈ 0,961.

Vậy bác sĩ P kết luận: Nếu một người có triệu chứng S thì người đó mắc bệnh X với xác suất khoảng 0,961.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y = \(\frac{{{x^2} - 2x + 1}}{{x + 1}}\) có đồ thị (C). Khẳng định nào sau đây là sai?

A. Đường thẳng x = −1 là tiệm cận đứng của đồ thị (C).

B. Đường thẳng y = 1 là tiệm cận ngang của đồ thị (C).

C. Đường thẳng y = x – 3 là tiệm cận xiên của đồ thị (C).

D. Hàm số có hai cực trị.

Xem đáp án » 22/08/2024 5,342

Câu 2:

Cho tứ diện đều ABCD có cạnh bằng a. Tính \(\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right).\overrightarrow {BC} \).

Xem đáp án » 22/08/2024 2,326

Câu 3:

Một cặp trẻ sinh đôi có thể do cùng một trứng sinh ra (gọi đó là cặp song sinh cùng trứng) hay do hai trứng khác nhau sinh ra (gọi là cặp song sinh khác trứng). Cặp song sinh cùng trứng luôn có cùng giới tính. Cặp song sinh khác trứng có xác suất \(\frac{1}{2}\) là cùng giới tính. Thống kê cho thấy 34% cặp song sinh cùng là trai và 30% cặp song sinh cùng là gái.

a) Chọn ngẫu nhiên một cặp trẻ sinh đôi. Tính xác suất để cặp trẻ sinh đôi được chọn là cặp song sinh cùng trứng.

b) Chọn ngẫu nhiên một cặp sinh đôi ta được một cặp sinh đôi có cùng giới tính. Tính xác suất để cặp sinh đôi này cặp song sinh cùng trứng.

Xem đáp án » 22/08/2024 2,038

Câu 4:

Đồ thị trong hình vẽ dưới đây là của hàm số nào?

Đồ thị trong hình vẽ dưới đây là của hàm số nào?   A. y = (x^2 - 2x)/(x + 1)  (ảnh 1)

A. \(y = \frac{{{x^2} - 2x}}{{x + 1}}.\)

B. \(y = \frac{{{x^2} + 2x}}{{x + 1}}.\)

C. \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}.\)

D. \(y = \frac{{2x}}{{x + 1}}.\)

Xem đáp án » 22/08/2024 1,359

Câu 5:

Chọn ngẫu nhiên gia đình có 2 con. Biết rằng người con đầu là con gái. Xác suất để gia đình đó có hai con gái là

A. 0,6.

B. 0,5.

C. 0,55.

D. 0,65.

Xem đáp án » 22/08/2024 1,302

Câu 6:

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số y = \( - \frac{{{x^2} + x + 1}}{x}\).

b) Tìm các giá trị của tham số m để đường thẳng d: y = −2x + m cắt đồ thị (C) tại hai điểm A và B thuộc hai nhánh của đồ thị và đoạn AB ngắn nhất.

Xem đáp án » 22/08/2024 1,264

Câu 7:

a) Lập bảng biến thiên của hàm số y = \(\frac{{{x^2}}}{{x + 1}}\).

b) Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M = \(\frac{{{{\cos }^2}\alpha }}{{\cos \alpha + 1}}\).

Xem đáp án » 22/08/2024 837

Bình luận


Bình luận