Câu hỏi:
25/08/2024 3,470Giải các phương trình:
a) 2x2 – 7x = 0;
b) \( - {x^2} + \sqrt 8 x - \sqrt {21} = 0;\)
c) \( - \sqrt 5 {x^2} + 2x + 3\sqrt 5 = 0;\)
d) 1,5x2 – 0,4x – 1,2 = –1,1x2 + 1;
e) \(\left( {\sqrt 7 - 2} \right){x^2} + 3x + 10 = {x^2} + 10;\)
g) \( - \sqrt {32} {x^2} - 4x + \sqrt 2 = \sqrt 2 {x^2} + x - \sqrt 8 .\)
Quảng cáo
Trả lời:
a) 2x2 – 7x = 0
x(2x ‒ 7) = 0
x = 0 hặc 2x ‒ 7 = 0
x = 0 hoặc \[x = \frac{7}{2}.\]
Vậy phương trình có hai nghiệm phân biệt là x1 = 0, \[{x_2} = \frac{7}{2}.\]
b) \( - {x^2} + \sqrt 8 x - \sqrt {21} = 0;\)
Phương trình trên có \[\Delta = {\left( {\sqrt 8 } \right)^2} - 4 \cdot \left( { - 1} \right) \cdot \left( { - \sqrt {21} } \right) = 8 - 4\sqrt {21} < 0.\]
Suy ra phương trình \( - {x^2} + \sqrt 8 x - \sqrt {21} = 0\) vô nghiệm.
c) \( - \sqrt 5 {x^2} + 2x + 3\sqrt 5 = 0;\)
Phương trình trên có \[\Delta ' = {1^2} - \left( { - \sqrt 5 } \right) \cdot 3\sqrt 5 = 16 > 0\] và \(\sqrt {\Delta '} = \sqrt {16} = 4.\)
Do đó phương trình có hai nghiệm phân biệt là:
\[{x_1} = \frac{{ - 1 + 4}}{{ - \sqrt 5 }} = \frac{3}{{ - \sqrt 5 }} = \frac{{ - 3\sqrt 5 }}{5}.\]
\[{x_2} = \frac{{ - 1 - 4}}{{ - \sqrt 5 }} = \frac{{ - 5}}{{ - \sqrt 5 }} = \sqrt 5 .\]
Vậy phương trình đã cho có hai nghiệm phân biệt là \({x_1} = \frac{{ - 3\sqrt 5 }}{5};{x_2} = \sqrt 5 .\)
d) 1,5x2 – 0,4x – 1,2 = –1,1x2 + 1
2,6x2 – 0,4x ‒ 2,2 = 0.
Phương trình trên có ∆’ = (‒0,2)2 ‒ 2,6.(‒2,2) = 5,76 > 0 và \(\sqrt {\Delta '} = \sqrt {5,76} = 2,4.\)
Do đó phương trình có hai nghiệm phân biệt là:
\[{x_1} = \frac{{0,2 + 2,4}}{{2,6}} = \frac{{2,6}}{{2,6}} = 1;\]
\[{x_2} = \frac{{0,2 - 2,4}}{{2,6}} = \frac{{ - 2,2}}{{2,6}} = \frac{{ - 11}}{{13}}.\]
Vậy phương trình đã cho có hai nghiệm phân biệt là \({x_1} = 1;\,\,{x_2} = \frac{{ - 11}}{{13}}.\)
e) \(\left( {\sqrt 7 - 2} \right){x^2} + 3x + 10 = {x^2} + 10\)
\(\left( {\sqrt 7 - 2 - 1} \right){x^2} + 3x = 0\)
\(\left( {\sqrt 7 - 3} \right){x^2} + 3x = 0\)
\[x\left[ {\left( {\sqrt 7 - 3} \right)x + 3} \right] = 0\]
x = 0 hoặc \[\left( {\sqrt 7 - 3} \right)x + 3 = 0\]
x = 0 hoặc \[x = \frac{{ - 3}}{{\sqrt 7 - 3}}\]
x = 0 hoặc \(x = \frac{{ - 3\left( {\sqrt 7 + 3} \right)}}{{7 - 9}} = \frac{{3\left( {\sqrt 7 + 3} \right)}}{2}.\)
Vậy phương trình đã cho có hai nghiệm phân biệt là \({x_1} = 0;\,\,{x_2} = \frac{{3\left( {\sqrt 7 + 3} \right)}}{2}.\)
g) \( - \sqrt {32} {x^2} - 4x + \sqrt 2 = \sqrt 2 {x^2} + x - \sqrt 8 \)
\[\left( {\sqrt 2 + \sqrt {32} } \right){x^2} + 5x - \sqrt 2 - \sqrt 8 = 0\]
\[\left( {\sqrt 2 + 4\sqrt 2 } \right){x^2} + 5x - \sqrt 2 - \sqrt 8 = 0\]
\[5\sqrt 2 {x^2} + 5x - \sqrt 2 - \sqrt 8 = 0.\]
Phương trình trên có \[\Delta = {5^2} - 4 \cdot 5\sqrt 2 \cdot \left( { - \sqrt 2 - \sqrt 8 } \right)\]
\[ = 25 - 20\sqrt 2 \cdot \left( { - \sqrt 2 - \sqrt 8 } \right)\]
= 25 + 40 + 80 = 145.
\[{x_1} = \frac{{ - 5 + \sqrt {145} }}{{2 \cdot 5\sqrt 2 }} = \frac{{\left( { - 5 + \sqrt {145} } \right)\sqrt 2 }}{{10 \cdot 2}} = \frac{{ - 5\sqrt 2 + \sqrt {290} }}{{20}};\]
\[{x_2} = \frac{{ - 5 - \sqrt {145} }}{{2 \cdot 5\sqrt 2 }} = \frac{{\left( { - 5 - \sqrt {145} } \right)\sqrt 2 }}{{10 \cdot 2}} = \frac{{ - 5\sqrt 2 - \sqrt {290} }}{{20}}.\]
Vậy phương trình đã cho có hai nghiệm phân biệt là \[{x_1} = \frac{{ - 5\sqrt 2 + \sqrt {290} }}{{20}};\] \[{x_2} = \frac{{ - 5\sqrt 2 - \sqrt {290} }}{{20}}.\]
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đổi 80 cm = 0,8 m.
Diện tích lát đá là: 1 000 . (0,8 . 0,8) = 640 (m2).
Diện tích sân có dạng hình chữ nhật là: a(a + 8) (m2).
Diện tích còn lại để trồng cỏ là: a(a + 8) – 640 (m2).
Mặt khác, diện tích trồng cỏ là: 4 480 000 : 35 000 = 128 (m2).
Từ đó, ta có phương trình: a(a + 8) – 640 = 128 hay a2 + 8a – 768 = 0.
Phương trình trên có ∆’ = 42 ‒ 1.(‒768) = 784 > 0 và \(\sqrt {\Delta '} = \sqrt {784} = 28.\)
Do đó phương trình có hai nghiệm phân biệt:
\[{a_1} = \frac{{ - 4 + 28}}{1} = 24\] (thỏa mãn điều kiện a > 0);
\[{a_2} = \frac{{ - 4 - 28}}{1} = - 32\] (không thỏa mãn điều kiện a > 0).
Vậy a = 24 (m).
Lời giải
Doanh thu từ tiền bán vé của ngày hôm đó là 12 249 nghìn đồng nên ta có:
–10x2 + 700x – 1 = 12 249
Hay 10x2 ‒ 700x + 12 250 = 0.
Phương trình trên có ∆’ = (‒350)2 ‒ 10.12 250 = 0, nên phương trình có nghiệm kép \[{x_1} = {x_2} = \frac{{350}}{{10}} = 35.\]
Vậy giá vé bán trong ngày 1 tháng 6 của rạp chiếu phim đó là 35 nghìn đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Chuyên đề 8: Hình học (có đáp án)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận