Giải các phương trình:
a) 2x2 – 7x = 0;
b) \( - {x^2} + \sqrt 8 x - \sqrt {21} = 0;\)
c) \( - \sqrt 5 {x^2} + 2x + 3\sqrt 5 = 0;\)
d) 1,5x2 – 0,4x – 1,2 = –1,1x2 + 1;
e) \(\left( {\sqrt 7 - 2} \right){x^2} + 3x + 10 = {x^2} + 10;\)
g) \( - \sqrt {32} {x^2} - 4x + \sqrt 2 = \sqrt 2 {x^2} + x - \sqrt 8 .\)
Giải các phương trình:
a) 2x2 – 7x = 0;
b) \( - {x^2} + \sqrt 8 x - \sqrt {21} = 0;\)
c) \( - \sqrt 5 {x^2} + 2x + 3\sqrt 5 = 0;\)
d) 1,5x2 – 0,4x – 1,2 = –1,1x2 + 1;
e) \(\left( {\sqrt 7 - 2} \right){x^2} + 3x + 10 = {x^2} + 10;\)
g) \( - \sqrt {32} {x^2} - 4x + \sqrt 2 = \sqrt 2 {x^2} + x - \sqrt 8 .\)
Quảng cáo
Trả lời:
a) 2x2 – 7x = 0
x(2x ‒ 7) = 0
x = 0 hặc 2x ‒ 7 = 0
x = 0 hoặc \[x = \frac{7}{2}.\]
Vậy phương trình có hai nghiệm phân biệt là x1 = 0, \[{x_2} = \frac{7}{2}.\]
b) \( - {x^2} + \sqrt 8 x - \sqrt {21} = 0;\)
Phương trình trên có \[\Delta = {\left( {\sqrt 8 } \right)^2} - 4 \cdot \left( { - 1} \right) \cdot \left( { - \sqrt {21} } \right) = 8 - 4\sqrt {21} < 0.\]
Suy ra phương trình \( - {x^2} + \sqrt 8 x - \sqrt {21} = 0\) vô nghiệm.
c) \( - \sqrt 5 {x^2} + 2x + 3\sqrt 5 = 0;\)
Phương trình trên có \[\Delta ' = {1^2} - \left( { - \sqrt 5 } \right) \cdot 3\sqrt 5 = 16 > 0\] và \(\sqrt {\Delta '} = \sqrt {16} = 4.\)
Do đó phương trình có hai nghiệm phân biệt là:
\[{x_1} = \frac{{ - 1 + 4}}{{ - \sqrt 5 }} = \frac{3}{{ - \sqrt 5 }} = \frac{{ - 3\sqrt 5 }}{5}.\]
\[{x_2} = \frac{{ - 1 - 4}}{{ - \sqrt 5 }} = \frac{{ - 5}}{{ - \sqrt 5 }} = \sqrt 5 .\]
Vậy phương trình đã cho có hai nghiệm phân biệt là \({x_1} = \frac{{ - 3\sqrt 5 }}{5};{x_2} = \sqrt 5 .\)
d) 1,5x2 – 0,4x – 1,2 = –1,1x2 + 1
2,6x2 – 0,4x ‒ 2,2 = 0.
Phương trình trên có ∆’ = (‒0,2)2 ‒ 2,6.(‒2,2) = 5,76 > 0 và \(\sqrt {\Delta '} = \sqrt {5,76} = 2,4.\)
Do đó phương trình có hai nghiệm phân biệt là:
\[{x_1} = \frac{{0,2 + 2,4}}{{2,6}} = \frac{{2,6}}{{2,6}} = 1;\]
\[{x_2} = \frac{{0,2 - 2,4}}{{2,6}} = \frac{{ - 2,2}}{{2,6}} = \frac{{ - 11}}{{13}}.\]
Vậy phương trình đã cho có hai nghiệm phân biệt là \({x_1} = 1;\,\,{x_2} = \frac{{ - 11}}{{13}}.\)
e) \(\left( {\sqrt 7 - 2} \right){x^2} + 3x + 10 = {x^2} + 10\)
\(\left( {\sqrt 7 - 2 - 1} \right){x^2} + 3x = 0\)
\(\left( {\sqrt 7 - 3} \right){x^2} + 3x = 0\)
\[x\left[ {\left( {\sqrt 7 - 3} \right)x + 3} \right] = 0\]
x = 0 hoặc \[\left( {\sqrt 7 - 3} \right)x + 3 = 0\]
x = 0 hoặc \[x = \frac{{ - 3}}{{\sqrt 7 - 3}}\]
x = 0 hoặc \(x = \frac{{ - 3\left( {\sqrt 7 + 3} \right)}}{{7 - 9}} = \frac{{3\left( {\sqrt 7 + 3} \right)}}{2}.\)
Vậy phương trình đã cho có hai nghiệm phân biệt là \({x_1} = 0;\,\,{x_2} = \frac{{3\left( {\sqrt 7 + 3} \right)}}{2}.\)
g) \( - \sqrt {32} {x^2} - 4x + \sqrt 2 = \sqrt 2 {x^2} + x - \sqrt 8 \)
\[\left( {\sqrt 2 + \sqrt {32} } \right){x^2} + 5x - \sqrt 2 - \sqrt 8 = 0\]
\[\left( {\sqrt 2 + 4\sqrt 2 } \right){x^2} + 5x - \sqrt 2 - \sqrt 8 = 0\]
\[5\sqrt 2 {x^2} + 5x - \sqrt 2 - \sqrt 8 = 0.\]
Phương trình trên có \[\Delta = {5^2} - 4 \cdot 5\sqrt 2 \cdot \left( { - \sqrt 2 - \sqrt 8 } \right)\]
\[ = 25 - 20\sqrt 2 \cdot \left( { - \sqrt 2 - \sqrt 8 } \right)\]
= 25 + 40 + 80 = 145.
\[{x_1} = \frac{{ - 5 + \sqrt {145} }}{{2 \cdot 5\sqrt 2 }} = \frac{{\left( { - 5 + \sqrt {145} } \right)\sqrt 2 }}{{10 \cdot 2}} = \frac{{ - 5\sqrt 2 + \sqrt {290} }}{{20}};\]
\[{x_2} = \frac{{ - 5 - \sqrt {145} }}{{2 \cdot 5\sqrt 2 }} = \frac{{\left( { - 5 - \sqrt {145} } \right)\sqrt 2 }}{{10 \cdot 2}} = \frac{{ - 5\sqrt 2 - \sqrt {290} }}{{20}}.\]
Vậy phương trình đã cho có hai nghiệm phân biệt là \[{x_1} = \frac{{ - 5\sqrt 2 + \sqrt {290} }}{{20}};\] \[{x_2} = \frac{{ - 5\sqrt 2 - \sqrt {290} }}{{20}}.\]
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đổi 80 cm = 0,8 m.
Diện tích lát đá là: 1 000 . (0,8 . 0,8) = 640 (m2).
Diện tích sân có dạng hình chữ nhật là: a(a + 8) (m2).
Diện tích còn lại để trồng cỏ là: a(a + 8) – 640 (m2).
Mặt khác, diện tích trồng cỏ là: 4 480 000 : 35 000 = 128 (m2).
Từ đó, ta có phương trình: a(a + 8) – 640 = 128 hay a2 + 8a – 768 = 0.
Phương trình trên có ∆’ = 42 ‒ 1.(‒768) = 784 > 0 và \(\sqrt {\Delta '} = \sqrt {784} = 28.\)
Do đó phương trình có hai nghiệm phân biệt:
\[{a_1} = \frac{{ - 4 + 28}}{1} = 24\] (thỏa mãn điều kiện a > 0);
\[{a_2} = \frac{{ - 4 - 28}}{1} = - 32\] (không thỏa mãn điều kiện a > 0).
Vậy a = 24 (m).
Lời giải
Doanh thu từ tiền bán vé của ngày hôm đó là 12 249 nghìn đồng nên ta có:
–10x2 + 700x – 1 = 12 249
Hay 10x2 ‒ 700x + 12 250 = 0.
Phương trình trên có ∆’ = (‒350)2 ‒ 10.12 250 = 0, nên phương trình có nghiệm kép \[{x_1} = {x_2} = \frac{{350}}{{10}} = 35.\]
Vậy giá vé bán trong ngày 1 tháng 6 của rạp chiếu phim đó là 35 nghìn đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.