Câu hỏi:
25/08/2024 291Người ta lát đá và trồng cỏ cho một sân chơi. Sân có dạng hình chữ nhật với các kích thước a (m), (a + 8) (m) (a > 0). Người ta đã dùng 1 000 viên đá lát hình vuông cạnh 80 cm để lát, diện tích còn lại để trồng cỏ. Tìm a, biết chi phí để trồng cỏ là 4 480 000 đồng và giá trồng mỗi mét vuông cỏ là 35 000 đồng.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đổi 80 cm = 0,8 m.
Diện tích lát đá là: 1 000 . (0,8 . 0,8) = 640 (m2).
Diện tích sân có dạng hình chữ nhật là: a(a + 8) (m2).
Diện tích còn lại để trồng cỏ là: a(a + 8) – 640 (m2).
Mặt khác, diện tích trồng cỏ là: 4 480 000 : 35 000 = 128 (m2).
Từ đó, ta có phương trình: a(a + 8) – 640 = 128 hay a2 + 8a – 768 = 0.
Phương trình trên có ∆’ = 42 ‒ 1.(‒768) = 784 > 0 và \(\sqrt {\Delta '} = \sqrt {784} = 28.\)
Do đó phương trình có hai nghiệm phân biệt:
\[{a_1} = \frac{{ - 4 + 28}}{1} = 24\] (thỏa mãn điều kiện a > 0);
\[{a_2} = \frac{{ - 4 - 28}}{1} = - 32\] (không thỏa mãn điều kiện a > 0).
Vậy a = 24 (m).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Giải các phương trình:
a) 2x2 – 7x = 0;
b) \( - {x^2} + \sqrt 8 x - \sqrt {21} = 0;\)
c) \( - \sqrt 5 {x^2} + 2x + 3\sqrt 5 = 0;\)
d) 1,5x2 – 0,4x – 1,2 = –1,1x2 + 1;
e) \(\left( {\sqrt 7 - 2} \right){x^2} + 3x + 10 = {x^2} + 10;\)
g) \( - \sqrt {32} {x^2} - 4x + \sqrt 2 = \sqrt 2 {x^2} + x - \sqrt 8 .\)
Câu 2:
Doanh thu T (nghìn đồng) từ tiền bán vé trong ngày 1 tháng 6 của một rạp chiếu phim với giá mỗi vé là x (nghìn đồng) được tính theo công thức: T = –10x2 + 700x – 1. Xác định giá vé bán trong ngày 1 tháng 6 của rạp chiếu phim đó, biết doanh thu từ tiền bán vé của ngày hôm đó là 12 249 nghìn đồng.
Câu 3:
Trong các phương trình sau, phương trình nào là phương trình bậc hai một ẩn? Đối với những phương trình bậc hai một ẩn đó, xác định hệ số a của x2, hệ số b của x, hệ số tự do c.
a) 0x2 + 7x + 5 = 0.
b) \( - 3{x^2} + 17x - \sqrt 7 = 0.\)
c) –17x + 2 = 0.
d) \(\frac{{ - 1}}{{\sqrt 5 }}{x^2} = 0.\)
e) \(\sqrt {10} x + 1 = 0.\)
g) \(\frac{{ - 2}}{{3{x^2}}} + 4x - 1 = 0.\)
Câu 4:
Một chiếc ô tô đang chạy thì bắt đầu tăng tốc. Quãng đường đi được của chiếc ô tô đó kể từ khi bắt đầu tăng tốc được tính theo công thức: s = t2 + 16t (s tính bằng mét, t tính bằng giây, t > 0).
a) Tính quãng đường ô tô đó đi được sau 7 giây kể từ khi bắt đầu tăng tốc.
b) Ô tô đó mất bao lâu để đi được quãng đường 80 m kể từ khi bắt đầu tăng tốc?
Câu 5:
Ở một gian hàng của siêu thị, người ta xếp các khối hàng hình lập phương giống nhau thành hình tháp n tầng, với tầng đáy thứ n có n khối hàng, tầng ngay trên tầng đáy có (n – 1) khối hàng, ..., tầng trên cùng có 1 khối hàng (chẳng hạn với n = 8 ta có cách xếp như minh hoạ ở Hình 7).
a) Tính tổng số S các khối hàng đã xếp ở một hình tháp n tầng.
b) Tìm n, biết S = 120.
Câu 6:
Một hộp quà thiết kế theo dạng hình hộp chữ nhật. Bốn mặt thân hộp là các hình chữ nhật may bằng vải màu đỏ có chiều dài 22 cm, hai đáy hộp là các hình vuông cạnh a cm may bằng vải màu xanh (xem Hình 8). Tìm a để tổng diện tích vải màu đỏ nhiều hơn ba lần tổng diện tích vải màu xanh là 312 cm2, biết 0 < a < 8.
về câu hỏi!