Câu hỏi:
25/08/2024 284Cho ngũ giác đều ABCDE và một điểm M nằm trong ngũ giác. Gọi A’, B’, C’, D’, E’ lần lượt là các điểm nằm trên các đoạn thẳng MA, MB, MC, MD, ME sao cho \(\frac{{MA'}}{{MA}} = \frac{{MB'}}{{MB}} = \frac{1}{3},\,\,\frac{{CC'}}{{MC}} = \frac{{DD'}}{{MD}} = \frac{2}{3},\,\,\frac{{ME'}}{{{E^\prime }E}} = \frac{1}{2}.\) Chứng minh ngũ giác A’B’C’D’E’ là ngũ giác đều.
Quảng cáo
Trả lời:
Từ \(\frac{{MA'}}{{MA}} = \frac{{MB'}}{{MB}} = \frac{1}{3},\,\,\frac{{CC'}}{{MC}} = \frac{{DD'}}{{MD}} = \frac{2}{3},\,\,\frac{{ME'}}{{{E^\prime }E}} = \frac{1}{2}\) suy ra:
\(\frac{{MA'}}{{MA}} = \frac{{MB'}}{{MB}} = \frac{{MC'}}{{MC}} = \frac{{MD'}}{{MD}} = \frac{{ME'}}{{ME}} = \frac{1}{3}.\,\,\,\,\left( 1 \right)\)
Do đó: A’B’ // AB, B’C’ // BC, C’D’ // CD, D’E’ // DE, E’A’ // EA (định lí Thalès đảo).
Do A’B’ // AB nên \(\widehat {MA'B'} = \widehat {MAB}\) (đồng vị);
Do E’A’ // EA nên \(\widehat {MA'E'} = \widehat {MAE}\) (đồng vị).
Suy ra \(\widehat {MA'B'} + \widehat {MA'E'} = \widehat {MAB} + \widehat {MAE}\)
Hay \(\widehat {B'A'E'} = \widehat {BAE}.\)
Chứng minh tương tự, ta được các góc A’, B’, C’, D’, E’ của ngũ giác A’B’C’D’E’ tương ứng bằng các góc A, B, C, D, E của ngũ giác đều ABCDE.
Mà ABCDE là ngũ giác đều nên góc A, B, C, D, E của ngũ giác bằng nhau.
Do đó các góc của ngũ giác A’B’C’D’E’ bằng nhau. (2)
Mặt khác, từ (1) ta cũng chứng minh được:
\(A'B' = \frac{{AB}}{3};\) \(B'C' = \frac{{BC}}{3};\) \(C'D' = \frac{{CD}}{3};\) \(D'E' = \frac{{DE}}{3};\) \(E'A' = \frac{{EA}}{3}.\)
Mà ABCDE là ngũ giác đều nên AB = BC = CD = DE = EA.
Do đó: A’B’ = B’C’ = C’D’ = D’E’ = E’A’. (3)
Từ (2) và (3) suy ra ngũ giác A’B’C’D’E’ là ngũ giác đều.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ngũ giác ABCDE là ngũ giác đều nên AB = BC = CD = DE = EA và \(\widehat {ABC} = \widehat {BCD} = \widehat {CDE} = \widehat {DEA} = \widehat {EAB}.\)
Ta cũng có tổng 5 góc của ngũ giác đều ABCDE bằng tổng các góc của ba tam giác ABC, ACD, ADE, tức là bằng 3.180° = 540°.
Do đó: \(\widehat {ABC} = \widehat {BCD} = \widehat {CDE} = \widehat {DEA} = \widehat {EAB} = \frac{{540^\circ }}{5} = 108^\circ .\)
Xét ∆AEB cân tại A (do AB = AE) ta có:
\(\widehat {ABE} = \widehat {AEB} = \frac{{180^\circ - \widehat {EAB}}}{2} = \frac{{180^\circ - 108^\circ }}{2} = 36^\circ .\)
Hay \(\widehat {ABM} = \widehat {AEN} = 36^\circ .\)
Tương tự, đối với ∆EAD cân tại E ta có: \[\widehat {EAD} = \widehat {EDA} = 36^\circ \] hay \[\widehat {EAN} = 36^\circ .\]
Do đó ta có \[\widehat {EAN} = \widehat {NEA} = 36^\circ .\] Suy ra ∆AEN cân tại N.
Tương tự, ta chứng minh được ∆MAB cân tại M (do \(\widehat {MAB} = \widehat {MBA} = 36^\circ )\)
Suy ra \(\widehat {AMB} = 180^\circ - 2\widehat {MAB} = 180^\circ - 2 \cdot 36^\circ = 108^\circ .\)
Mặt khác: \(\widehat {CMB} = 180^\circ - \widehat {AMB} = 180^\circ - 108^\circ = 72^\circ ;\)
\(\widehat {MBC} = \widehat {ABC} - \widehat {ABM} = 108^\circ - 36^\circ = 72^\circ .\)
Suy ra tam giác CMB cân tại C.
b) Ta có: \(\widehat {EAB} = \widehat {EAN} + \widehat {NAM} + \widehat {MAB}\)
Suy ra \(\widehat {NAM} = \widehat {EAB} - \widehat {EAN} - \widehat {MAB} = 108^\circ - 36^\circ - 36^\circ = 36^\circ .\)
Do đó \(\widehat {EAN} = \widehat {NAM} = 36^\circ .\)
Vì vậy AN là phân giác của góc EAM.
c) Xét ∆MAB và ∆BAC có:
\(\widehat {AMB} = \widehat {ABC} = 108^\circ \) và \(\widehat {BAC}\) là góc chung
Do đó ∆MAB ᔕ ∆BAC (g.g), suy ra \(\frac{{AB}}{{AC}} = \frac{{BM}}{{CB}}\) hay AB.BC = BM.AC.
Lời giải
Áp dụng các bất đẳng thức tam giác ta có:
AF + FE > AE (trong tam giác AEF);
AJ + JB > AB (trong tam giác ABJ);
BI + IC > BC (trong tam giác BCI);
CH + HD > CD (trong tam giác CDH);
GE + GD > ED (trong tam giác GDE).
Do đó, ta có:
AF + FE + AJ + JB + BI + IC + CH + HD + GE + GD > AE + AB + BC + CD + ED. (1)
Mặt khác:
(AF + GD) + (JB + FE) + (AJ + IC) + (BI + HD) + (EG + CH) < AD + BE + AC + BD + EC.
Hay AF + FE + AJ + JB + BI + IC + CH + HD + GE + GD < AB + BC + CD + DE + EA. (2)
Từ (1) và (2) suy ra:
AC + AD + BD + BE + EC > AB + BC + CD + DE + EA.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Chuyên đề 8: Hình học (có đáp án)