Câu hỏi:

29/08/2024 142

Cho parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = 4x - m - 1.\)

1) Tìm tọa độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\) khi \(m = 2.\)

2) Tìm giá trị của tham số \(m\) để đường thẳng \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ là \({x_1},\,\,{x_2}\) thỏa mãn giá trị \({x_1},\,\,{x_2}\) bằng độ dài hai cạnh góc vuông của một tam giác vuông có độ dài đường cao ứng với cạnh huyền là \(h = \frac{1}{{\sqrt 5 }}.\)

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1) Với \(m = 2\) thì \(\left( d \right)\) có dạng \(y = 4x - 3.\)

Gọi \(\left( {{x_0};{y_0}} \right)\) là tọa độ giao điểm (nếu có) của \(\left( d \right)\) và \(\left( P \right),\) khi đó ta có:

\({y_0} = x_0^2\) và \({y_0} = 4{x_0} - 3.\)

Suy ra \(x_0^2 = 4{x_0} - 3\) hay \(x_0^2 - 4{x_0} + 3 = 0.\)

Số giao điểm của \(\left( P \right)\) và \(\left( d \right)\) là số nghiệm của phương trình \(x_0^2 - 4{x_0} + 3 = 0.\,\,\,\left( 1 \right)\)

Ta có \(a + b + c = 1 + \left( { - 4} \right) + 3 = 0\) nên phương trình trên có hai nghiệm là \({x_0} = 1;\,\,{x_0} = 3.\)

⦁ Với \({x_0} = 1\) thay vào \({y_0} = x_0^2,\) ta có \({y_0} = {1^2} = 1.\) Suy ra \(A\left( {1;\,\,1} \right).\)

⦁ Với \({x_0} = 3\) thay vào \({y_0} = x_0^2,\) ta có \({y_0} = {3^2} = 9.\) Suy ra \(B\left( {3;\,\,9} \right).\)

Vậy với \(m = 2\) thì toạ độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\) là \(A\left( {1;\,\,1} \right)\) và \(B\left( {3;\,\,9} \right).\)

2) Gọi \(\left( {{x_0};{y_0}} \right)\) là tọa độ giao điểm (nếu có) của \(\left( d \right)\) và \(\left( P \right),\) khi đó ta có:

\({y_0} = x_0^2\) và \({y_0} = 4{x_0} - m - 1.\)

Suy ra \(x_0^2 = 4{x_0} - m - 1\) hay \(x_0^2 - 4{x_0} + m + 1 = 0.\)

Số giao điểm của \(\left( P \right)\) và \(\left( d \right)\) là số nghiệm của phương trình \(x_0^2 - 4{x_0} + m + 1 = 0.\,\,\,\left( 2 \right)\)

Ta có: \({\rm{\Delta '}} = {\left( { - 2} \right)^2} - \left( {m + 1} \right) = 3 - m.\)

Để \(\left( P \right)\) cắt \(\left( d \right)\) tại 2 điểm phân biệt hoành độ là \({x_1},\,\,{x_2}\) thì phương trình \(\left( 2 \right)\) phải có hai nghiệm phân biệt \({x_1},\,\,{x_2},\) tức là \(\Delta ' > 0,\) suy ra \(3 - m > 0\) nên \(m < 3.\)

Với \(m < 3,\) áp dụng Viète, ta có: \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = 4}\\{{x_1} \cdot {x_2} = m + 1.}\end{array}} \right.\)

Để \({x_1},\,\,{x_2}\) là độ dài hai cạnh góc vuông của tam giác vuông thì \(\left\{ \begin{array}{l}{x_1} + {x_2} > 0\\{x_1}{x_2} > 0\end{array} \right.,\) suy ra  nên \(m >  - 1.\)

Kết hợp điều kiện \(m < 3,\) ta được \[ - 1 < m < 3.\]

Chứng minh bổ đề: Cho tam giác vuông có độ dài cạnh huyền là \(a,\) độ dài hai cạnh góc vuông là \(b,\,\,c\) và độ dài đường cao kẻ từ đỉnh đến cạnh huyền bằng \(a.\) Khi đó:

\(\frac{1}{{{h^2}}} = \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}.\)

Cho parabol P: y = x^2 và đường thẳngd:y = 4x - m - 1. 1) Tìm tọa độ giao điểm củaP và d khi m = 2 (ảnh 1)
 

Áp dụng hệ thức đã chứng minh ở bổ đề trên, khi độ dài hai cạnh góc vuông của một tam giác vuông có độ dài đường cao ứng với cạnh huyền là \(h = \frac{1}{{\sqrt 5 }},\) thì ta có:

\(\frac{1}{{x_1^2}} + \frac{1}{{x_2^2}} = \frac{1}{{{{\left( {\frac{1}{{\sqrt 5 }}} \right)}^2}}} = 5\) nên \(\frac{{x_1^2 + x_2^2}}{{{{\left( {{x_1}{x_2}} \right)}^2}}} = 5\)

Suy ra \(x_1^2 + x_2^2 = 5{\left( {{x_1}{x_2}} \right)^2}\)

 \({\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 5{\left( {{x_1}{x_2}} \right)^2}\)

Do đó, ta có: \({4^2} - 2\left( {m + 1} \right) = 5{\left( {m + 1} \right)^2}\)

\(5{m^2} + 12m - 9 = 0\)

\(m =  - 3\) (không thỏa mãn) hoặc \(m = \frac{3}{5}\) (thỏa mãn).

Vậy với \(m = \frac{3}{5}\) thoả mãn bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn \(\left( {O;R} \right)\) có đường kính \(AB,\) đường thẳng \(d\) là tiếp tuyến của đường tròn \(\left( O \right)\) tại điểm \(A,\) điểm \(C\) di động trên \(d\) sao cho \(C\) không trùng với \(A\) và \(CA > R.\) Từ \(C\) kẻ tiếp tuyến \(CD\) của đường tròn \(\left( O \right)\) \((D\) là tiếp điểm và \(D\) không trùng với \(A).\)

1) Chứng minh tứ giác \(AODC\) nội tiếp đường tròn.

2) Gọi \(H\) là giao điểm của \(AD\) và \(OC,\,\,BC\) cắt đường tròn \(\left( O \right)\) tại điểm thứ hai là \(K\left( {K \ne B} \right),\) đoạn thẳng \(CH\) cắt đường tròn \(\left( O \right)\) tại điểm \(I.\) Chứng minh rằng \(IC \cdot IO = IH \cdot CO\) và \(\widehat {CKH} = 2 \cdot \widehat {IAO}.\)

3) Hai đường thẳng \(AB\) và \(CD\) cắt nhau tại \(E.\) Đường thẳng qua \(O\) vuông góc \(AB\) cắt \(CE\) tại \(M.\) Tìm vị trí của \(C\) để biểu thức \(T = 9 \cdot \frac{{CA}}{{CM}} + \frac{{ME}}{{MO}}\) đạt giá trị nhỏ nhất.

Xem đáp án » 29/08/2024 984

Câu 2:

Cho \(a,\,\,b,\,\,c\) là các số thực dương thỏa mãn điều kiện \(a + b + c = 3.\) Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{b}{{{a^2} + 1}} + \frac{c}{{{b^2} + 1}} + \frac{a}{{{c^2} + 1}} + \frac{1}{4}\left( {ab + bc + ca} \right).\)

Xem đáp án » 29/08/2024 950

Câu 3:

Nhân ngày Quốc tế thiếu nhi, cô chủ nhiệm lớp đi mua bút làm quà tặng cho học sinh. Cửa hàng cô đến mua đang có chương trình ưu đãi như sau: giảm giá \(20{\rm{\% }}\) so với giá niêm yết từ cái thứ 1 đến cái thứ 30 cho mỗi cái bút; từ cái thứ 31 trở đi được áp dụng mức giảm giá tiếp theo là \(40{\rm{\% }}\) so với giá niêm yết cho mỗi cái bút.

1) Cô mua 40 cái bút hết \[900{\rm{ }}000\] đồng. Tính giá niêm yết của một cái bút.

2) Nếu cô có \[1{\rm{ }}260{\rm{ }}000\] đồng thì cô mua được bao nhiêu cái bút?

Xem đáp án » 29/08/2024 943

Câu 4:

Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{x - 5y = 16}\\{3x + 2y =  - 3.}\end{array}} \right.\)

Xem đáp án » 29/08/2024 587

Câu 5:

Điều kiện xác định của biểu thức \(P\left( x \right) = \sqrt {x - 10} \) là:

Xem đáp án » 29/08/2024 273

Câu 6:

Cho biểu thức \(A = \frac{{3\sqrt x  + 1}}{{\sqrt x  + 3}}\left( {1 + \frac{1}{{\sqrt x  + 2}}} \right) + \frac{9}{{\sqrt x  + 2}},\) với \(x \ge 0.\)

1) Rút gọn biểu thức \(A.\)

2) Tìm tất cả các giá trị nguyên của \(x\) để biểu thức \(A\) nhận giá trị nguyên.

Xem đáp án » 29/08/2024 215

Câu 7:

Đồ thị hàm số \(y = 3x + 2\) đi qua điểm nào trong các điểm sau? 

Xem đáp án » 29/08/2024 146

Bình luận


Bình luận