Câu hỏi:

29/08/2024 2,294

Cho \(a,\,\,b,\,\,c\) là các số thực dương thỏa mãn điều kiện \(a + b + c = 3.\) Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{b}{{{a^2} + 1}} + \frac{c}{{{b^2} + 1}} + \frac{a}{{{c^2} + 1}} + \frac{1}{4}\left( {ab + bc + ca} \right).\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Với \(a\) là số thực dương, ta có \[{a^2} + 1 \ge 2a\] nên \(\frac{b}{{{a^2} + 1}} = b - \frac{{{a^2}b}}{{{a^2} + 1}} \ge b - \frac{{{a^2}b}}{{2a}} = b - \frac{{ab}}{2}.\)

Chứng minh tương tự, ta có: \(\frac{c}{{{b^2} + 1}} \ge c - \frac{{bc}}{2}\) và \(\frac{a}{{{c^2} + 1}} \ge a - \frac{{ac}}{2}.\)

Do đó: \(P \ge \left( {a + b + c} \right) - \frac{1}{2}\left( {ab + bc + ca} \right) + \frac{1}{4}\left( {ab + bc + ca} \right) = 3 - \frac{1}{4}\left( {ab + bc + ca} \right)\)

Lại có \(\left( {ab + bc + ca} \right) \le \frac{{{{\left( {a + b + c} \right)}^2}}}{3} = 3\) nên \(P \ge 3 - \frac{1}{4} \cdot 3 = \frac{9}{4}.\)

Dấu “=” xảy ra khi và chỉ khi \(a = b = c = 1.\)

Vậy min \(P = \frac{9}{4}\) khi \(a = b = c = 1.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Nhân ngày Quốc tế thiếu nhi, cô chủ nhiệm lớp đi mua bút làm quà tặng cho học sinh. Cửa hàng cô đến mua đang có chương trình ưu đãi như sau: giảm giá \(20{\rm{\% }}\) so với giá niêm yết từ cái thứ 1 đến cái thứ 30 cho mỗi cái bút; từ cái thứ 31 trở đi được áp dụng mức giảm giá tiếp theo là \(40{\rm{\% }}\) so với giá niêm yết cho mỗi cái bút.

1) Cô mua 40 cái bút hết \[900{\rm{ }}000\] đồng. Tính giá niêm yết của một cái bút.

2) Nếu cô có \[1{\rm{ }}260{\rm{ }}000\] đồng thì cô mua được bao nhiêu cái bút?

Xem đáp án » 29/08/2024 4,445

Câu 2:

Cho đường tròn \(\left( {O;R} \right)\) có đường kính \(AB,\) đường thẳng \(d\) là tiếp tuyến của đường tròn \(\left( O \right)\) tại điểm \(A,\) điểm \(C\) di động trên \(d\) sao cho \(C\) không trùng với \(A\) và \(CA > R.\) Từ \(C\) kẻ tiếp tuyến \(CD\) của đường tròn \(\left( O \right)\) \((D\) là tiếp điểm và \(D\) không trùng với \(A).\)

1) Chứng minh tứ giác \(AODC\) nội tiếp đường tròn.

2) Gọi \(H\) là giao điểm của \(AD\) và \(OC,\,\,BC\) cắt đường tròn \(\left( O \right)\) tại điểm thứ hai là \(K\left( {K \ne B} \right),\) đoạn thẳng \(CH\) cắt đường tròn \(\left( O \right)\) tại điểm \(I.\) Chứng minh rằng \(IC \cdot IO = IH \cdot CO\) và \(\widehat {CKH} = 2 \cdot \widehat {IAO}.\)

3) Hai đường thẳng \(AB\) và \(CD\) cắt nhau tại \(E.\) Đường thẳng qua \(O\) vuông góc \(AB\) cắt \(CE\) tại \(M.\) Tìm vị trí của \(C\) để biểu thức \(T = 9 \cdot \frac{{CA}}{{CM}} + \frac{{ME}}{{MO}}\) đạt giá trị nhỏ nhất.

Xem đáp án » 29/08/2024 2,319

Câu 3:

Đồ thị hàm số \(y = 3x + 2\) đi qua điểm nào trong các điểm sau? 

Xem đáp án » 29/08/2024 1,143

Câu 4:

Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{x - 5y = 16}\\{3x + 2y =  - 3.}\end{array}} \right.\)

Xem đáp án » 29/08/2024 852

Câu 5:

Cho biểu thức \(A = \frac{{3\sqrt x  + 1}}{{\sqrt x  + 3}}\left( {1 + \frac{1}{{\sqrt x  + 2}}} \right) + \frac{9}{{\sqrt x  + 2}},\) với \(x \ge 0.\)

1) Rút gọn biểu thức \(A.\)

2) Tìm tất cả các giá trị nguyên của \(x\) để biểu thức \(A\) nhận giá trị nguyên.

Xem đáp án » 29/08/2024 519

Câu 6:

Điều kiện xác định của biểu thức \(P\left( x \right) = \sqrt {x - 10} \) là:

Xem đáp án » 29/08/2024 487
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua