Câu hỏi:
13/09/2024 711Cho tam giác ABC cân tại A, có O, I lần lượt là tâm các đường tròn ngoại tiếp và đường tròn nội tiếp tam giác ABC.
a) Chứng minh rằng:
– Ba điểm A, O, I cùng thuộc một đường thẳng;
– Đường thẳng OA vuông góc với BC và đi qua điểm chính giữa D (khác điểm A) của cung BC.
b) Cho BC = 24 cm, AC = 20 cm. Tính độ dài bán kính R của đường tròn ngoại tiếp và bán kính r của đường tròn nội tiếp tam giác ABC.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
a) ⦁ Vì tam giác ABC cân tại A nên đường trung trực AO của cạnh BC (do O là tâm đường tròn ngoại tiếp ∆ABC) đồng thời là đường phân giác của góc BAC.
Mà AI là đường phân giác của góc BAC (do I là tâm đường tròn nội tiếp tam giác ABC).
Suy ra hai đường thẳng AO và AI trùng nhau hay ba điểm A, O, I cùng thuộc một đường thẳng.
⦁ Do OA là đường trung trực của BC nên OA ⊥ BC.
Ta có (do AI là đường phân giác của góc BAC) hay
Gọi D là giao điểm của AO với đường tròn (O) (khác điểm A) nên
Suy ra BD = CD.
Do đó đường thẳng OA đi qua điểm chính giữa D (khác điểm A) của cung BC.
b) ⦁ Gọi H là giao điểm của AD và BC. Do đó, AH ⊥ BC và H là trung điểm của BC.
Suy ra (cm).
Xét ∆ACH vuông tại H, theo định lí Pythagore, ta có:
AC2 = AH2 + HC2
Suy ra (cm).
Ta có AD là đường kính của đường tròn (O) ngoại tiếp tam giác ABC nên .
Xét ∆ACH và ∆ADC có:
và góc A chung
Do đó ∆ACH ᔕ ∆ADC (g.g)
Suy ra hay AC2 = AH.AD.
Nên (cm).
Do đó, bán kính đường tròn (O) đường kính AD ngoại tiếp ∆ABC là (cm).
⦁ Do ∆ABC cân tại A nên AB = AC = 20 cm.
Do BI là phân giác của góc ABH nên .
Ta có hay (tính chất tỉ lệ thức) hay
Tức là .Vì vậy cm.
Vậy độ dài bán kính R của đường tròn ngoại tiếp và bán kính r của đường tròn nội tiếp tam giác ABC lần lượt là R = 12,5 cm và r = 6 cm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm phân biệt A, B. Đường thẳng AO cắt (O) và (O’) lần lượt tại hai điểm C, E (khác điểm A). Đường thẳng AO’ cắt (O) và (O’) lần lượt tại hai điểm D, F (khác điểm A). Chứng minh:
a) C, B, F thẳng hàng;
b) Bốn điểm C, D, E, F cùng nằm trên một đường tròn;
c) A là tâm đường tròn nội tiếp tam giác BDE.
Câu 4:
Cho tam giác đều ABC nội tiếp đường tròn tâm O, bán kính R.
a) Chứng minh rằng O cũng là tâm đường tròn nội tiếp tam giác ABC.
b) Vẽ tam giác IJK ngoại tiếp đường tròn (O; R) với JK // BC, IJ // AC, IK // AB. Chứng minh tam giác IJK đều.
c) Gọi R’ là bán kính của đường tròn ngoại tiếp tam giác IJK và r là bán kính của đường tròn nội tiếp tam giác ABC. Tính
Câu 5:
Cho tam giác nhọn ABC. Các đường cao BE, CD của tam giác ABC cắt nhau tại K. Tìm tâm đường tròn ngoại tiếp mỗi tam giác sau:
a) Tam giác BDE;
b) Tam giác DEC;
c) Tam giác ADE.
Câu 6:
Cho tam giác nhọn ABC phân giác AM. Gọi O, O1, O2 lần lượt là tâm đường tròn ngoại tiếp các tam giác ABC, AMB, AMC. Chứng minh rằng:
a) OO1, OO2, O1O2 lần lượt là các đường trung trực của AB, AC, AM;
b) Tam giác OO1O2 cân.
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 06
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 04
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 05
về câu hỏi!