Câu hỏi:

13/09/2024 2,322

Trên đường tròn (O) bán kính R, lấy các điểm A, B, C, D sao cho sđAB=60°, sđBC=90°, sđCD=120° (Hình 7).

Trên đường tròn (O) bán kính R, lấy các điểm A, B, C, D sao cho sđ AB =60 độ, sđ BC =90 độ (ảnh 1)

a) Xác định tâm và tính theo R bán kính đường tròn ngoại tiếp của các tam giác OAB, OBC, OAD, ODC.

b) Gọi I là giao điểm của AC và BD. Tính bán kính đường tròn ngoại tiếp của các tam giác IAB, IBC, IAD, IDC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Trên đường tròn (O) bán kính R, lấy các điểm A, B, C, D sao cho sđ AB =60 độ, sđ BC =90 độ (ảnh 2)

a) Gọi G là trọng tâm của tam giác OAB.

Do A, B thuộc đường tròn (O) nên OA = OB = R.

Lại có sđAB=60° nên AOB^=60° (góc ở tâm chắn cung AB của đường tròn (O)).

Do đó, tam giác OAB là tam giác đều với cạnh AB = OA = OB = R nên có tâm đường tròn ngoại tiếp là G và bán kính đường tròn ngoại tiếp là R33.

Do sđBC=90° nên BOC^=90° (góc ở tâm chắn cung BC của đường tròn (O)).

Do đó tam giác OBC vuông tại O, theo định lí Pythagore, ta có:

BC2 = OB2 + OC2

Suy ra BC=OB2+OC2=R2+R2=R2 nên tâm, bán kính đường tròn ngoại tiếp của ∆OBC lần lượt là trung điểm E của BC và R22.

Tương tự tâm, bán kính đường tròn ngoại tiếp tam giác OAD lần lượt là trung điểm F của AD và R22.

Gọi H là trung điểm của DC và giao điểm của tia OH và cung nhỏ CD là K.

Do sđCD=120° nên DOC^=120° (góc nội tiếp chắn cung DC của đường tròn (O)).

Trong tam giác ODC cân tại O có OH là trung tuyến nên đồng thời là phân giác của DOC^.

Suy ra DOH^=COH^=12DOC^=12·120°=60°.

Lại có OD = OK = OC nên ∆DOK, ∆COK là tam giác đều.

Suy ra KD = KO = KC = R.

Vậy tâm và bán kính đường tròn ngoại tiếp tam giác ODC lần lượt là K và R.

b) Xét ∆OHC vuông tại H có HC=OC·sin COH^=R·sin 60°=R32.

Suy ra DC=2HC=2·R32=R3.

Xét đường tròn (O) có CAB^=12sđCB=12·90°=45° (góc nội tiếp chắn cung BC).

Ta có sđAB+sđBC+sđCD+sđDA=360°

Suy ra sđDA=360°-sđAB-sđBC-sđCD=360°-60°-90°-120°=90°

Khi đó, DBA^=12sđDA=12·90°=45° (góc nội tiếp chắn cung DA).

Do đó CAB^=DBA^=45°.

Xét ∆ABI có: IAB^+IBA^+AIB^=180°.

Suy ra AIB^=180°-IAB^-IBA^=180°-45°-45°=90°.

Hay AC vuông góc với BD.

Do đó ∆IAB vuông tại I, ∆IAD vuông tại I, ∆IBC vuông tại I, ∆IDC vuông tại I.

Mặt khác, AB = R, BC=AD=R2 (chứng minh ở câu a) và DC=R3 do đó bán kính đường tròn ngoại tiếp của các tam giác IAB, IBC, IAD, IDC lần lượt là: R2, R22, R22,R32.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm phân biệt A, B. Đường thẳng AO cắt (O) và (O’) lần lượt (ảnh 1)

a) Xét đường tròn (O) có AC là đường kính nên ABC^=90° (góc nội tiếp chắn nửa đường tròn (O)).

Xét đường tròn (O’) có AF là đường kính nên ABF^=90° (góc nội tiếp chắn nửa đường tròn (O’)).

Do đó ABC^+ABF^=90°+90°=180° hay CBF^=180°.

Suy ra C, B, F thẳng hàng.

b) Xét đường tròn (O) có AC là đường kính nên ADC^=90° (góc nội tiếp chắn nửa đường tròn (O)).

Xét đường tròn (O’) có AF là đường kính nên AEF^=90° (góc nội tiếp chắn nửa đường tròn (O’)).

Do đó FDC^=CEF^=90° nên hai điểm D, E nằm trên đường tròn đường kính CF.

Vậy bốn điểm C, D, E, F cùng nằm trên một đường tròn đường kính CF.

c) Ta có DCA^=DBA^ (hai góc nội tiếp cùng chắn cung DA của đường tròn (O)).

Tương tự ABE^=AFE^ DCE^=DFE^. 

Suy ra ABE^=DBA^ do đó BA là phân giác của góc DBE.

Tương tự, DA là phân giác của góc BDE.

Suy ra A là tâm đường tròn nội tiếp tam giác BDE.

Câu 2

Cho tam giác ABC vuông tại A có AB = 6, AC = 8, bán kính đường tròn nội tiếp là r, bán kính đường tròn ngoại tiếp là R. Tính rR

Lời giải

Cho tam giác ABC vuông tại A có AB = 6, AC = 8, bán kính đường tròn nội tiếp là r, bán kính đường tròn ngoại tiếp (ảnh 1)

Tam giác ABC vuông tại A, theo định lí Pythagore, ta có:

BC2 = AB2 + AC2 = 62 + 82 = 100.

Suy ra BC=100=10

Do đó bán kính đường tròn ngoại tiếp tam giác ABC là R=BC2=102=5.

Lại có r=AB+AC-BC2 (theo kết quả của Ví dụ 4, trang 83, SBT Toán 9, Tập một)

Suy ra r=AB+AC-BC2=6+8-102=42=2.

Do đó rR=25.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho tam giác đều ABC nội tiếp đường tròn tâm O, bán kính R.

a) Chứng minh rằng O cũng là tâm đường tròn nội tiếp tam giác ABC.

b) Vẽ tam giác IJK ngoại tiếp đường tròn (O; R) với JK // BC, IJ // AC, IK // AB. Chứng minh tam giác IJK đều.

c) Gọi R’ là bán kính của đường tròn ngoại tiếp tam giác IJK và r là bán kính của đường tròn nội tiếp tam giác ABC. Tính rR'

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay