Câu hỏi:
13/09/2024 2,322Quảng cáo
Trả lời:
a) ⦁ Gọi G là trọng tâm của tam giác OAB.
Do A, B thuộc đường tròn (O) nên OA = OB = R.
Lại có nên (góc ở tâm chắn cung AB của đường tròn (O)).
Do đó, tam giác OAB là tam giác đều với cạnh AB = OA = OB = R nên có tâm đường tròn ngoại tiếp là G và bán kính đường tròn ngoại tiếp là .
⦁ Do nên (góc ở tâm chắn cung BC của đường tròn (O)).
Do đó tam giác OBC vuông tại O, theo định lí Pythagore, ta có:
BC2 = OB2 + OC2
Suy ra nên tâm, bán kính đường tròn ngoại tiếp của ∆OBC lần lượt là trung điểm E của BC và .
⦁ Tương tự tâm, bán kính đường tròn ngoại tiếp tam giác OAD lần lượt là trung điểm F của AD và .
⦁ Gọi H là trung điểm của DC và giao điểm của tia OH và cung nhỏ CD là K.
Do nên (góc nội tiếp chắn cung DC của đường tròn (O)).
Trong tam giác ODC cân tại O có OH là trung tuyến nên đồng thời là phân giác của .
Suy ra .
Lại có OD = OK = OC nên ∆DOK, ∆COK là tam giác đều.
Suy ra KD = KO = KC = R.
Vậy tâm và bán kính đường tròn ngoại tiếp tam giác ODC lần lượt là K và R.
b) Xét ∆OHC vuông tại H có .
Suy ra .
Xét đường tròn (O) có (góc nội tiếp chắn cung BC).
Ta có
Suy ra
Khi đó, (góc nội tiếp chắn cung DA).
Do đó .
Xét ∆ABI có: .
Suy ra .
Hay AC vuông góc với BD.
Do đó ∆IAB vuông tại I, ∆IAD vuông tại I, ∆IBC vuông tại I, ∆IDC vuông tại I.
Mặt khác, AB = R, (chứng minh ở câu a) và do đó bán kính đường tròn ngoại tiếp của các tam giác IAB, IBC, IAD, IDC lần lượt là:
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Xét đường tròn (O) có AC là đường kính nên (góc nội tiếp chắn nửa đường tròn (O)).
Xét đường tròn (O’) có AF là đường kính nên (góc nội tiếp chắn nửa đường tròn (O’)).
Do đó hay .
Suy ra C, B, F thẳng hàng.
b) Xét đường tròn (O) có AC là đường kính nên (góc nội tiếp chắn nửa đường tròn (O)).
Xét đường tròn (O’) có AF là đường kính nên (góc nội tiếp chắn nửa đường tròn (O’)).
Do đó nên hai điểm D, E nằm trên đường tròn đường kính CF.
Vậy bốn điểm C, D, E, F cùng nằm trên một đường tròn đường kính CF.
c) Ta có (hai góc nội tiếp cùng chắn cung DA của đường tròn (O)).
Tương tự và .
Suy ra do đó BA là phân giác của góc DBE.
Tương tự, DA là phân giác của góc BDE.
Suy ra A là tâm đường tròn nội tiếp tam giác BDE.
Lời giải
Tam giác ABC vuông tại A, theo định lí Pythagore, ta có:
BC2 = AB2 + AC2 = 62 + 82 = 100.
Suy ra
Do đó bán kính đường tròn ngoại tiếp tam giác ABC là .
Lại có (theo kết quả của Ví dụ 4, trang 83, SBT Toán 9, Tập một)
Suy ra .
Do đó .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Cho tam giác ABC cân tại A, có O, I lần lượt là tâm các đường tròn ngoại tiếp và đường tròn nội tiếp tam giác ABC.
a) Chứng minh rằng:
– Ba điểm A, O, I cùng thuộc một đường thẳng;
– Đường thẳng OA vuông góc với BC và đi qua điểm chính giữa D (khác điểm A) của cung BC.
b) Cho BC = 24 cm, AC = 20 cm. Tính độ dài bán kính R của đường tròn ngoại tiếp và bán kính r của đường tròn nội tiếp tam giác ABC.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Cho tam giác đều ABC nội tiếp đường tròn tâm O, bán kính R.
a) Chứng minh rằng O cũng là tâm đường tròn nội tiếp tam giác ABC.
b) Vẽ tam giác IJK ngoại tiếp đường tròn (O; R) với JK // BC, IJ // AC, IK // AB. Chứng minh tam giác IJK đều.
c) Gọi R’ là bán kính của đường tròn ngoại tiếp tam giác IJK và r là bán kính của đường tròn nội tiếp tam giác ABC. Tính
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Chuyên đề 8: Hình học (có đáp án)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận