Câu hỏi:
13/09/2024 208Cho tam giác đều ABC nội tiếp đường tròn tâm O, bán kính R.
a) Chứng minh rằng O cũng là tâm đường tròn nội tiếp tam giác ABC.
b) Vẽ tam giác IJK ngoại tiếp đường tròn (O; R) với JK // BC, IJ // AC, IK // AB. Chứng minh tam giác IJK đều.
c) Gọi R’ là bán kính của đường tròn ngoại tiếp tam giác IJK và r là bán kính của đường tròn nội tiếp tam giác ABC. Tính
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Vì O là tâm đường tròn ngoại tiếp ∆ABC nên O là trọng tâm của tam giác.
Mà trọng tâm của tam giác đều cũng là tâm đường tròn nội tiếp tam giác đều đó.
Do đó O cũng là tâm đường tròn nội tiếp tam giác ABC.
b) Do JK // BC và IK // AB nên tứ giác ABCK là hình bình hành.
Mặt khác, (do tam giác ABC đều)
Suy ra hay .
Tương tự, ta chứng minh được .
Do đó, tam giác IJK là tam giác đều.
c) ⦁ Vì ∆IJK đều nên bán kính của đường tròn ngoại tiếp ∆IJK là .
Ta có nên ∆ACK đều nên AK = AC.
Tương tự, ta chứng minh được AJ = AB.
Lại có AB = AC (do ∆ABC đều) nên AK = AJ hay A là trung điểm của JK.
Do đó .
⦁ Vì tam giác ABC đều nên bán kính của đường tròn nội tiếp tam giác ABC là: .
Suy ra .
Do đó .
Vậy .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm phân biệt A, B. Đường thẳng AO cắt (O) và (O’) lần lượt tại hai điểm C, E (khác điểm A). Đường thẳng AO’ cắt (O) và (O’) lần lượt tại hai điểm D, F (khác điểm A). Chứng minh:
a) C, B, F thẳng hàng;
b) Bốn điểm C, D, E, F cùng nằm trên một đường tròn;
c) A là tâm đường tròn nội tiếp tam giác BDE.
Câu 4:
Cho tam giác ABC cân tại A, có O, I lần lượt là tâm các đường tròn ngoại tiếp và đường tròn nội tiếp tam giác ABC.
a) Chứng minh rằng:
– Ba điểm A, O, I cùng thuộc một đường thẳng;
– Đường thẳng OA vuông góc với BC và đi qua điểm chính giữa D (khác điểm A) của cung BC.
b) Cho BC = 24 cm, AC = 20 cm. Tính độ dài bán kính R của đường tròn ngoại tiếp và bán kính r của đường tròn nội tiếp tam giác ABC.
Câu 5:
Tìm phát biểu đúng trong các phát biểu sau:
a) Tâm đường tròn ngoại tiếp tam giác là giao điểm ba đường phân giác của tam giác đó.
b) Tâm đường tròn nội tiếp tam giác là giao điểm của ba đường trung trực của tam giác đó.
c) Đường tròn ngoại tiếp tam giác vuông có tâm là trung điểm của cạnh huyền.
Câu 6:
Cho tam giác ABC vuông cân tại C và nội tiếp đường tròn (O; R). E là điểm tùy ý trên cung nhỏ AC của đường tròn đó. Gọi F là giao điểm của EB và CO, I là tâm đường tròn ngoại tiếp tam giác ECF. Chứng minh rằng khi E di chuyển trên cung nhỏ AC thì I luôn di chuyển trên một đoạn thẳng cố định.
về câu hỏi!