Câu hỏi:

19/09/2024 231

Cho sáu điểm A(1; 2; 3), B(2; −1; 1), C(3; 3; −3) và A', B', C' thỏa mãn

\(\overrightarrow {A'A}  + \overrightarrow {B'B}  + \overrightarrow {C'C}  = \overrightarrow 0 \). Tìm tọa độ trọng tâm G của tam giác A'B'C'.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(\overrightarrow {A'A} + \overrightarrow {B'B} + \overrightarrow {C'C} = \overrightarrow 0 \)

\(\overrightarrow {A'G} + \overrightarrow {GA} + \overrightarrow {B'G} + \overrightarrow {GB} + \overrightarrow {C'G} + \overrightarrow {GC} = \overrightarrow 0 \)

\(\left( {\overrightarrow {A'G} + \overrightarrow {B'G} + \overrightarrow {C'G} } \right) + \left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right) = \overrightarrow 0 \)

\(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \).

Suy ra G cũng là trọng tâm của tam giác ABC.

Gọi G(x; y; z), ta có:

\(\left\{ \begin{array}{l}x = \frac{{1 + 2 + 3}}{3} = 2\\y = \frac{{2 + \left( { - 1} \right) + 3}}{3} = \frac{4}{3}\\z = \frac{{3 + 1 + \left( { - 3} \right)}}{3} = \frac{1}{3}\end{array} \right.\) G\(\left( {2;\frac{4}{3};\frac{1}{3}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) thỏa mãn \(\left| {\overrightarrow a } \right| = 2\sqrt 3 \), \(\left| {\overrightarrow b } \right|\) = 3 và \(\left( {\overrightarrow a ,\overrightarrow b } \right)\) = 30°. Tính độ dài của vectơ \(3\overrightarrow a  - 2\overrightarrow b \).

Xem đáp án » 19/09/2024 2,036

Câu 2:

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 2.

a) \(\overrightarrow {AB} = \overrightarrow {C'D'} \).

b) \(\overrightarrow {AB} + \overrightarrow {DC} = 2\overrightarrow {D'C'} \).

c) \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} = \overrightarrow {AC'} \).

d) \(\overrightarrow {AC} .\overrightarrow {AD'} = 8\).

Xem đáp án » 19/09/2024 1,456

Câu 3:

Cho ba vectơ \(\overrightarrow a \) = (1; 0; −2), \(\overrightarrow b \) = (−2; 1; 3) và \(\overrightarrow c \) = (−4; 3; 5). Tìm hai số thực m, n sao cho \(m\overrightarrow a + n\overrightarrow b = \overrightarrow c \).

Xem đáp án » 19/09/2024 1,197

Câu 4:

Trong không gian Oxyz được thiết lập tại một sân bay, người ta ghi nhận hai máy bay đang bay đến với các vectơ vận tốc \(\overrightarrow u \) = (90; −80; −120), \(\overrightarrow v \) = (60; −50; −60).

Trong không gian Oxyz được thiết lập tại một sân bay, người ta ghi nhận hai máy bay đang bay đến với các vectơ vận tốc u = (90; −80; −120), (ảnh 1)

Tính góc giữa hai vectơ  vận tốc nói trên (kết quả làm tròn đến hàng phần mười của độ).

Xem đáp án » 19/09/2024 1,002

Câu 5:

Cho hai vectơ \(\overrightarrow a \) = (2; m + 1; −1) và \(\overrightarrow b \) = (1; −3; 2). Tìm giá trị nguyên của m để \(\left| {\overrightarrow b \left( {2\overrightarrow a  - \overrightarrow b } \right)} \right| = 4\).

Xem đáp án » 19/09/2024 835

Câu 6:

Chi hai vectơ \(\overrightarrow u ,\overrightarrow v \) thỏa mãn \(\left| {\overrightarrow u } \right|\) = 2, \(\left| {\overrightarrow v } \right|\) = 1 và \(\left( {\overrightarrow u ,\overrightarrow v } \right)\) = 60°. Tính góc giữa hai vectơ \(\overrightarrow v \) và \(\overrightarrow u  - \overrightarrow v \).

Xem đáp án » 19/09/2024 764

Câu 7:

Cho tam giác ABC có A(0; 0; 1), B(−1; −2; 0), C(2; 1; −1). Tìm tọa độ chân đường cao H hạ từ A xuống BC.

Xem đáp án » 19/09/2024 741

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store