Để nghiên cứu mô hình mạng tinh thể than chì, một nhà hóa học đã thiết lập một hệ tọa độ Oxyz như Hình 2 (đơn vị: nm). Cho biết ABCDEF có dạng lục giác đều.
Tìm tọa độ các điểm A, B, C, E, A'.
Để nghiên cứu mô hình mạng tinh thể than chì, một nhà hóa học đã thiết lập một hệ tọa độ Oxyz như Hình 2 (đơn vị: nm). Cho biết ABCDEF có dạng lục giác đều.

Tìm tọa độ các điểm A, B, C, E, A'.
Quảng cáo
Trả lời:


Ta có: AH = \(\frac{3}{2}AB = 0,213\) (nm).
\(CH = \frac{{AB\sqrt 3 }}{2}\) ≈ 0,123 (nm).
AE = \(AB\sqrt 3 \) ≈ 0,246 (nm).
Suy ra A(0; 0; 0), B(0,142; 0; 0), C(0,213; 0,213; 0), E(0; 0,246; 0), A'(0; 0; 0,340).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi H(x; y; z).
Ta có: \(\overrightarrow {AH} \) = (x; y; z – 1), \(\overrightarrow {BC} \) = (3; 3; −1), \(\overrightarrow {BH} \) = (x + 1; y + 2; z).
H là chân đường cao hạ từ A xuống BC ⇔ \(\left\{ \begin{array}{l}\overrightarrow {AH} \bot \overrightarrow {BC} \\\overrightarrow {BC} ,\overrightarrow {BH} {\rm{ cu{\o}ng ph\"o \^o ng}}\end{array} \right.\).
⇔ \(\left\{ \begin{array}{l}x.3 + y.3 + \left( {z - 1} \right).\left( { - 1} \right) = 0\\\frac{{x + 1}}{3} = \frac{{y + 2}}{3} = \frac{z}{{ - 1}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{5}{{19}}\\y = - \frac{{14}}{{19}}\\z = - \frac{8}{{19}}\end{array} \right.\).
Vậy H\(\left( {\frac{5}{{19}}; - \frac{{14}}{{19}}; - \frac{8}{{19}}} \right)\).
Lời giải
Ta có: \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 2\sqrt 3 .3.\cos 30^\circ = 9\).
Có: \(\left| {3\overrightarrow a - 2\overrightarrow b } \right| = \sqrt {9{{\overrightarrow a }^2} - 12\overrightarrow a .\overrightarrow b + 4{{\overrightarrow b }^2}} = \sqrt {9.12 - 12.9 + 4.9} = 6\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.