Câu hỏi:

19/09/2024 1,421 Lưu

Để nghiên cứu mô hình mạng tinh thể than chì, một nhà hóa học đã thiết lập một hệ tọa độ Oxyz như Hình 2 (đơn vị: nm). Cho biết ABCDEF có dạng lục giác đều.

Để nghiên cứu mô hình mạng tinh thể than chì, một nhà hóa học đã thiết lập một hệ tọa độ Oxyz như Hình 2 (đơn vị: nm). Cho biết ABCDEF có dạng lục giác đều. (ảnh 1)

Tìm tọa độ các điểm A, B, C, E, A'.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Để nghiên cứu mô hình mạng tinh thể than chì, một nhà hóa học đã thiết lập một hệ tọa độ Oxyz như Hình 2 (đơn vị: nm). Cho biết ABCDEF có dạng lục giác đều. (ảnh 2)

Ta có: AH = \(\frac{3}{2}AB = 0,213\) (nm).

           \(CH = \frac{{AB\sqrt 3 }}{2}\) ≈ 0,123 (nm).

           AE = \(AB\sqrt 3 \) ≈ 0,246 (nm).

Suy ra A(0; 0; 0), B(0,142; 0; 0), C(0,213; 0,213; 0), E(0; 0,246; 0), A'(0; 0; 0,340).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi H(x; y; z).

Ta có: \(\overrightarrow {AH} \) = (x; y; z – 1), \(\overrightarrow {BC} \) = (3; 3; −1), \(\overrightarrow {BH} \) = (x + 1; y + 2; z).

H là chân đường cao hạ từ A xuống BC \(\left\{ \begin{array}{l}\overrightarrow {AH} \bot \overrightarrow {BC} \\\overrightarrow {BC} ,\overrightarrow {BH} {\rm{ cu{\o}ng ph\"o \^o ng}}\end{array} \right.\).

\(\left\{ \begin{array}{l}x.3 + y.3 + \left( {z - 1} \right).\left( { - 1} \right) = 0\\\frac{{x + 1}}{3} = \frac{{y + 2}}{3} = \frac{z}{{ - 1}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{5}{{19}}\\y = - \frac{{14}}{{19}}\\z = - \frac{8}{{19}}\end{array} \right.\).

Vậy H\(\left( {\frac{5}{{19}}; - \frac{{14}}{{19}}; - \frac{8}{{19}}} \right)\).

Lời giải

Ta có: \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 2\sqrt 3 .3.\cos 30^\circ = 9\).

Có: \(\left| {3\overrightarrow a - 2\overrightarrow b } \right| = \sqrt {9{{\overrightarrow a }^2} - 12\overrightarrow a .\overrightarrow b + 4{{\overrightarrow b }^2}} = \sqrt {9.12 - 12.9 + 4.9} = 6\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP