Câu hỏi:
19/09/2024 36Cho hai mặt phẳng (P): x + 2y + 2z – 10 = 0 và (Q): x + 2y + 2z – 3 = 0. Khoảng cách giữa (P) và (Q) bằng
A. \[\frac{8}{3}.\]
B. \[\frac{7}{3}.\]
C. 3.
D. \[\frac{4}{3}.\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Nhận thấy \[\frac{1}{1} = \frac{2}{2} = \frac{2}{2} \ne \frac{{ - 10}}{{ - 3}}\] nên (P) ∥ (Q).
Lấy A(0; 0; 5) thuộc (P).
Do đó, d((Q),(P)) = d(A, (Q)) = \[\frac{{\left| {1.0 + 2.0 + 2.5 - 3} \right|}}{{\sqrt {{2^2} + {2^2} + {1^2}} }} = \frac{7}{3}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Người ta muốn thiết kế một lều cắm trại có dạng là một phần mặt cầu bằng phần mềm 3D.
Cho biết phương trình bề mặt của lều là (S): (x – 3)2 + (y – 3)2 + (z – 1)2 = 9, phương trình mặt phẳng chứa cửa lều là (P): x = 2, phương trình chứa sàn lêu là (Q): z = 0. Tìm tâm và bán kính đường tròn cửa lều và đường tròn sàn lều.
Câu 2:
Cho hai điểm M(1; −1; 5) và N(0; 0; 1). Viết phương trình mặt phẳng (Q) chứa M, N và song song với trục Oy.
Câu 3:
Trong không gian Oxyz (đơn vị trên các trục tọa độ là centimét), đầu in phun của một máy in 3D đang đặt tại điểm M(5; 0; 35). Tính khoảng cách từ đầu in phun đến khay đặt vật in có phương trình z – 5 = 0.
Câu 4:
Cho điểm G(1; 2; 3). Viết phương trình mặt phẳng (P) đi qua G và cắt Ox, Oy, Oz lần lượt tại A, B, C sao cho G là trọng tâm của tam giác ABC.
Câu 6:
Cho các điểm A(2; 0; 0), B(0; 4; 0), C(0; 0; 4). Viết phương trình mặt cầu ngoại tiếp tứ diện OABC (O là gốc tọa độ).
Câu 7:
Cho hai đường thẳng d1: \[\left\{ \begin{array}{l}x = t\\y = - 1 - 4t\\z = 6 + 6t\end{array} \right.\] và đường thẳng d2: \[\frac{x}{2} = \frac{{y - 1}}{1} = \frac{{z + 2}}{{ - 5}}\].
Viết phương trình chính tắc của đường thẳng ∆ đi qua A(1; −1; 2), đồng thời vuông góc với cả hai đường thẳng d1; d2.
về câu hỏi!