Câu hỏi:

19/09/2024 183

Cho mặt phẳng (P): x – 2y + z – 5 = 0. Điểm nào dưới đây thuộc (P)?

A. M(1; 1; 6).

B. N(−5; 0; 0).

C. P(0; 0; −5).

D. Q(2; −1; 5).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Thay các tọa độ điểm ở các đáp án A, B, C, D.

Thay điểm M(1; 1; 6) vào (P) được: 1 – 2.1 + 6 – 5 = 0.

Vậy điểm M(1; 1; 6) thuộc (P).

Thay điểm N(−5; 0; 0) vào (P) được: −5 – 2.0 + 0 – 5 = −10 ≠ 0.

Do đó điểm N(−5; 0; 0) không thuộc (P).

Thay điểm P(0; 0; −5) vào (P) được: 0 – 2.0 + (−5) – 5 = −10 ≠ 0.

Do đó điểm P(0; 0; −5) không thuộc (P).

Thay điểm Q(2; −1; 5) vào (P) được: 2 – 2.(−1) + 5 – 5 = 4 ≠ 0.

Do đó điểm Q(2; −1; 5) không thuộc (P).

Chọn A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bề mặt của lều (S): (x – 3)2 + (y – 3)2 + (z – 1)2 = 9 có tâm I(3; 3; 1), bán kính R = 3.

Gọi d là đường thẳng đi qua I và vuông góc với (P): x = 2.

Ta có vectơ chỉ phương của d là \[{\overrightarrow a _d} = \left( {1;0;0} \right)\].

Suy ra d có phương trình tham số \[\left\{ \begin{array}{l}x = 3 + t\\y = 3\\z = 1\end{array} \right.\].

Gọi A(3 + t; 3; 1) là hình chiếu vuông góc của I trên (P). Thay tọa độ điểm A vào phương trình (P): x = 2, ta được (3 + t) – 2 = 0 hay t = −1, suy ra A(2; 3; 1).

Bán kính r1 của đường tròn có cửa lều là:

r1 = \[\sqrt {{R^2} - I{A^2}} = \sqrt {9 - 1} = 2\sqrt 2 \].

Vậy đường tròn cửa lều có tâm A(2; 3; 1), bán kính r1 = \[2\sqrt 2 \].

Gọi d' là đường thẳng đi qua I và vuông góc với (Q): z = 0.

Ta có vectơ chỉ phương của d'\[{\overrightarrow u _{d'}}\]= (0; 0; 1)

Suy ra d' có phương trình tham số: \[\left\{ \begin{array}{l}x = 3\\y = 3\\z = 1 + t.\end{array} \right.\]

Gọi B(3; 3; 1 + t) là hình chiếu vuông góc của I trên (Q). Thay tọa độ của điểm B vào phương trình (Q): z = 0 ta được 1 + t = 0, suy ra t = −1, suy ra B(3; 3; 0).

Bán kính r1 của đường tròn sàn lều là: r2 = \[\sqrt {{R^2} - I{B^2}} = \sqrt {9 - 1} = 2\sqrt 2 \].

Vậy đường tròn sàn lều có tâm B(3; 3; 0), bán kính r2 = \[2\sqrt 2 \].

Lời giải

Mặt cầu (S) có phương trình x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 (1).

Thay tọa độ bốn đỉnh của tứ diện vào (1), ta được:

\[\left\{ \begin{array}{l}{2^2} + {0^2} + {0^2} - 2a.2 - 2b.0 - 2c.0 + d = 0\\{0^2} + {4^2} + {0^2} - 2a.0 - 2b.4 - 2c.0 + d = 0\\{0^2} + {0^2} + {4^2} - 2a.0 - 2b.0 - 2c.4 + d = 0\\{0^2} + {0^2} + {0^2} - 2a.0 - 2b.0 - 2c.0 + d = 0\end{array} \right.\]

\[\left\{ \begin{array}{l}4 - 4a + d = 0\\16 - 8b + d = 0\\16 - 8c + d = 0\\d = 0\end{array} \right.\]

\[\left\{ \begin{array}{l}a = 1\\b = 2\\c = 2\\d = 0\end{array} \right.\].

Vậy phương trình của (S) là: x2 + y2 + z2 – 2x – 4y – 4z = 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Phương trình nào sau đây không phải là phương trình của một mặt cầu?

A. x2 + y2 + z2 + x – 2y + 4z – 3 = 0.

B. 2x2 + 2y2 + 2z2 – x – y – z = 0.

C. x2 + y2 + z2 – 2x + 4y – 4z + 10 = 0.

D. 2x2 + 2y2 + 2z2 + 4x + 8y + 6z + 3 = 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay