Câu hỏi:
19/09/2024 33Cho ba mặt phẳng (α): 3x + 3y + 6z + 13 = 0, (β): 2x + 2y – 2z + 9 = 0 và
(γ): x – y – 21 = 0. Trong các mệnh đề sau, mệnh đề nào sai?
A. (α) ⊥ (β).
B. (γ) ⊥ (β).
C. (α) ∥ (β).
D. (α) ⊥ (γ).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có: \[\overrightarrow {{n_\alpha }} = \left( {3;3;6} \right),\overrightarrow {{n_\beta }} = \left( {2;2; - 2} \right),\overrightarrow {{n_\gamma }} = \left( {1; - 1;0} \right)\] lần lượt là các vectơ chỉ phương của (α), (β) và (γ).
Nhận thấy \[\overrightarrow {{n_\alpha }} .\overrightarrow {{n_\beta }} = 3.2 + 3.2 + 6.\left( { - 2} \right) = 0\] nên (α) ⊥ (β).
\[\overrightarrow {{n_\gamma }} .\overrightarrow {{n_\beta }} = 1.2 + \left( { - 1} \right).2 + 0.\left( { - 2} \right) = 0\] nên (γ) ⊥ (β).
\[\overrightarrow {{n_\gamma }} .\overrightarrow {{n_\alpha }} = 1.3 + \left( { - 1} \right).3 + 0.6 = 0\] nên (α) ⊥ (γ).
Do đó mệnh đề C sai.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Người ta muốn thiết kế một lều cắm trại có dạng là một phần mặt cầu bằng phần mềm 3D.
Cho biết phương trình bề mặt của lều là (S): (x – 3)2 + (y – 3)2 + (z – 1)2 = 9, phương trình mặt phẳng chứa cửa lều là (P): x = 2, phương trình chứa sàn lêu là (Q): z = 0. Tìm tâm và bán kính đường tròn cửa lều và đường tròn sàn lều.
Câu 2:
Cho hai điểm M(1; −1; 5) và N(0; 0; 1). Viết phương trình mặt phẳng (Q) chứa M, N và song song với trục Oy.
Câu 3:
Trong không gian Oxyz (đơn vị trên các trục tọa độ là centimét), đầu in phun của một máy in 3D đang đặt tại điểm M(5; 0; 35). Tính khoảng cách từ đầu in phun đến khay đặt vật in có phương trình z – 5 = 0.
Câu 4:
Cho điểm G(1; 2; 3). Viết phương trình mặt phẳng (P) đi qua G và cắt Ox, Oy, Oz lần lượt tại A, B, C sao cho G là trọng tâm của tam giác ABC.
Câu 6:
Cho hai mặt phẳng (α): x – y + nz – 3 = 0 và (β): 2x + my + 2z + 6 = 0. Với giá trị nào của m, n thì (α) song song với (β)?
Câu 7:
Cho đường thẳng d: \[\left\{ \begin{array}{l}x = 1 + t\\y = 2t\\z = - 1\end{array} \right.\], điểm M(1; 2; 1) và mặt phẳng (P): 2x + y – 2z – 1 = 0.
Viết phương trình đường thẳng ∆ đi qua M, song song với (P) và vuông góc với d.
về câu hỏi!